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Plan for today
Ï What is Data Science?

Ï Data science in the real-world

Ï Data visualization
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Computers and Data

P.	Smyth:	Stats	5:	Data	Science	 Seminar,	Winter	2018:		9

Computers	and	Data

The	historical	meaning	of	the	term	“computer”:	
“one	who	computes”		(i.e.,	a	person)

Since	the	1700’s,	statisticians	have	been	using	
“computers”	to	analyze	data	– so	its	not	a	new	idea

For	example,	Karl	Pearson,	one	of	the	founders	of	
statistics,	directed	a	team	of	“computers”	in	his	lab	in	
London	around	the	early	1900’s

…..but	for	many	years,	“computers”	could	only	work	
on	relatively	small	problems
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Statistics and Modern Computing
Ï Post World War II

– Increasing use of computing to solve algorithmic aspects of statistical
analyses

Ï 1960’s
– Development of statistical computing and exploratory data analysis

Ï 1980’s
– Computing allowed statisticians to explore more flexible models

– Increase in use of “non-parametric” techniques and simulation methods

Ï 1990’s
– Development of “machine learning” — very flexible predictive modeling

techniques developed in computer science

Ï Today
– Data science = computing + statistics + applications
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Data storage became cheaper

P.	Smyth:	Stats	5:	Data	Science	 Seminar,	Winter	2018:		11

1985:	~	$100k	
per	gigabyte

2015:	~	$0.3	cents	
per	gigabyte
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Data revolution in Biology
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A Paradigm shift in data analysis
Ï Technological drivers

– Sensors (cheap and ubiquitous, e.g., GPS on your phone)

– Data storage (we are all “data owners”)

– Computational power

– Data analysis methods (statistics and machine learning)

– Internet and wireless communication (can collect and share data)

Ï Convergence — tremendous demand for data analysis
– In business, in sciences, in medicine, in engineering, and more......

Ï In the past, this demand was met by statistics
– Does not scale up — there are not nearly enough statisticians

– Need more tools than just statistics: need databases, algorithms, machine
learning,...
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What is Data Science?
Ï Data science involves the full lifecycle of data: from messy

unstructured data to predictions and decisions

Ï Data science is broader than just databases, statistics, ML,
algorithms, but these are all critical components

Ï Key aspects of data science include

– Domain knowledge and problem definition

– Data preparation/organization/management

– Understanding of uncertainty (statistics)

– Computing, algorithms, fitting models, machine learning

– Iterative exploration and experimentation

– Human judgement and interpretation
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Components of Data Science

Hiring managers need to know they are making a tradeoff between these
three skills when choosing a candidate. Skimp on hacking and your
employee will always be waiting for someone to get them data. Skimp on
stats and they’ll misinterpret noise as signal. Skimp on expertise (domain
knowledge) and they’ll overlook important business drivers.

If at all possible, remove one of these requirements. You’ll hire
candidates who are much stronger in the other two.

Notes

1. gr33ndata  liked this

2. metricadb  posted this
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Components of Data Science

Michael Carey/Padhraic Smyth, UC Irvine: Stats 170A/B, Winter 2018
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Components of Data Science

Statistics
(Mathematical and 

Probabilistic 
Foundations)

Computing
(Algorithms and

Software)

Applications
(Analyzing Real Data)

Data Science
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Data pipeline

Michael Carey/Padhraic Smyth, UC Irvine: Stats 170A/B, Winter 2018
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Data Pipelines

Extracted 
Data

Transformed 
Data

Unstructured 
Data

 Data for 
Modeling

 Predictive
Model

 Predictions/
Decisions
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How is Data Science used?

Michael Carey/Padhraic Smyth, UC Irvine: Stats 170A/B, Winter 2018
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Organizations Data Science Applications

Fraud detection

Automated 
recommendations

Demand
forecasting

Churn prediction

Online advertising

Automated 
customer support
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How does Amazon forecast how many items for its
warehouses?

Michael Carey/Padhraic Smyth, UC Irvine: Stats 170A/B, Winter 2018

 48

How does Amazon forecast how many items for its warehouses?

From www.formaspace.com

From dailymail.co.uk

From linkedin.com
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How does Facebook predict what content to show
you?

Michael Carey/Padhraic Smyth, UC Irvine: Stats 170A/B, Winter 2018
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 Graphics from Lars Backstrom, ESWC 2011

How does Facebook predict what content to show you?
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How do companies decide what ads to show you?

Michael Carey/Padhraic Smyth, UC Irvine: Stats 170A/B, Winter 2018
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? ?

?

?

How do companies decide what ads to show you?
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How can we make personalized recommendations in
medicine?

P.	Smyth:	Stats	5:	Data	Science	 Seminar,	Winter	2018:		31

How	can	we	make	personalized	recommendations	in	medicine?

Data	Matrix:
Rows	=	genes
Columns	=	patients

From	www.originlab.com
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How do public health workers predict infectious
disease outbreaks?

Influenza Observations and Forecast

US Map Chart World Map

Event Distributions
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https://www.stat.uci.edu/oc_covid_model/
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Questions?
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Data visualization: why visualize and explore?
Ï People are good at pattern recognition

– At spotting clusters, trends, outliers, structure, etc. that computers many
miss

Ï Usually two types of users
1. The data scientist who wants to explore/analyze/understand

Ï For the data scientist, visualization and exploration are part of an
iterative process

2. The person who needs a quick summary to make a decision
Ï For the consumer we want to communicate information quickly and

clearly
Ï e.g., for a medical doctor, for a policy-maker, for a company executive

Ï For data scientists...its always a good idea to look at your data
– Helps to understand where the semantics of the data...what the

measurements actually mean
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What is exploratory data analysis?
Ï EDA is broader than just visualization

Ï EDA = {visualization, clustering, dimension reduction,. . . }

Ï For small numbers of variables, EDA = visualization

Ï For large numbers of variables, we need to be cleverer
– Clustering, dimension reduction, embedding algorithms
– These are techniques that essentially reduce high-dimensional data to

something we can look at

Ï Pioneered by John Tukey (statistician at Bell Labs, Princeton) in
the 1960’s

– “let the data speak”
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Recommended reading
Fundamentals of Data Visualization
Claus O. Wilke
https://serialmentor.com/dataviz/

bad—A figure that has problems related to perception; it may be unclear, confusing,
overly complicated, or deceiving.
wrong—A figure that has problems related to mathematics; it is objectively incorrect.

Figure 1.1: Examples of ugly, bad, and wrong figures. (a) A bar plot showing three values (A = 3, B = 5, and C = 4).
This is a reasonable visualization with no major flaws. (b) An ugly version of part (a). While the plot is technically
correct, it is not aesthetically pleasing. The colors are too bright and not useful. The background grid is too
prominent. The text is displayed using three different fonts in three different sizes. (c) A bad version of part (a).
Each bar is shown with its own y-axis scale. Because the scales don’t align, this makes the figure misleading. One
can easily get the impression that the three values are closer together than they actually are. (d) A wrong version of
part (a). Without an explicit y axis scale, the numbers represented by the bars cannot be ascertained. The bars
appear to be of lengths 1, 3, and 2, even though the values displayed are meant to be 3, 5, and 4.

I am not explicitly labeling good figures. Any figure that isn’t clearly labeled as flawed should
be assumed to be at least acceptable. It is a figure that is informative, looks appealing, and
could be printed as is. Note that among the good figures, there will still be differences in
quality, and some good figures will be better than others.
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Mapping data onto aesthetics
Types of aesthetics:

Figure 2.1: Commonly used aesthetics in data visualization: position, shape, size, color, line width, line type. Some
of these aesthetics can represent both continuous and discrete data (position, size, line width, color) while others
can only represent discrete data (shape, line type).

All aesthetics fall into one of two groups: Those that can represent continuous data and those
that can not. Continuous data values are values for which arbitrarily fine intermediates exist.
For example, time duration is a continuous value. Between any two durations, say 50 seconds
and 51 seconds, there are arbitrarily many intermediates, such as 50.5 seconds, 50.51
seconds, 50.50001 seconds, and so on. By contrast, number of persons in a room is a
discrete value. A room can hold 5 persons or 6, but not 5.5. For the examples in Figure 2.1,
position, size, color, and line width can represent continuous data, but shape and line type
can only represent discrete data.

Next we’ll consider the types of data we may want to represent in our visualization. You may
think of data as numbers, but numerical values are only two out of several types of data we
may encounter. In addition to continuous and discrete numerical values, data can come in the
form of discrete categories, in the form of dates or times, and as text (Table 2.1). When data is
numerical we also call it quantitative and when it is categorical we call it qualitative. Variables
holding qualitative data are factors, and the different categories are called levels. The levels of
a factor are most commonly without order (as in the example of “dog”, “cat”, “fish” in Table
2.1), but factors can also be ordered, when there is an intrinsic order among the levels of the
factor (as in the example of “good”, “fair”, “poor” in Table 2.1).

Scales map data values onto aesthetics:

Table 2.2: First 12 rows of a dataset listing daily temperature normals for four weather stations. Data source: NOAA.

Month Day Location Station ID Temperature

Jan 1 Chicago USW00014819 25.6

Jan 1 San Diego USW00093107 55.2

Jan 1 Houston USW00012918 53.9

Jan 1 Death Valley USC00042319 51.0

Jan 2 Chicago USW00014819 25.5

Jan 2 San Diego USW00093107 55.3

Jan 2 Houston USW00012918 53.8

Jan 2 Death Valley USC00042319 51.2

Jan 3 Chicago USW00014819 25.3

Jan 3 San Diego USW00093107 55.3

Jan 3 Death Valley USC00042319 51.3

Jan 3 Houston USW00012918 53.8

2.2  Scales map data values onto aesthetics

To map data values onto aesthetics, we need to specify which data values correspond to
which specific aesthetics values. For example, if our graphic has an x axis, then we need to
specify which data values fall onto particular positions along this axis. Similarly, we may need
to specify which data values are represented by particular shapes or colors. This mapping
between data values and aesthetics values is created via scales. A scale defines a unique
mapping between data and aesthetics (Figure 2.2). Importantly, a scale must be one-to-one,
such that for each specific data value there is exactly one aesthetics value and vice versa. If a
scale isn’t one-to-one, then the data visualization becomes ambiguous.
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Mapping data onto aesthetics — example
Table 2.2: First 12 rows of a dataset listing daily temperature normals for four weather stations. Data source: NOAA.

Month Day Location Station ID Temperature

Jan 1 Chicago USW00014819 25.6

Jan 1 San Diego USW00093107 55.2

Jan 1 Houston USW00012918 53.9

Jan 1 Death Valley USC00042319 51.0

Jan 2 Chicago USW00014819 25.5

Jan 2 San Diego USW00093107 55.3

Jan 2 Houston USW00012918 53.8

Jan 2 Death Valley USC00042319 51.2

Jan 3 Chicago USW00014819 25.3

Jan 3 San Diego USW00093107 55.3

Jan 3 Death Valley USC00042319 51.3

Jan 3 Houston USW00012918 53.8

2.2  Scales map data values onto aesthetics

To map data values onto aesthetics, we need to specify which data values correspond to
which specific aesthetics values. For example, if our graphic has an x axis, then we need to
specify which data values fall onto particular positions along this axis. Similarly, we may need
to specify which data values are represented by particular shapes or colors. This mapping
between data values and aesthetics values is created via scales. A scale defines a unique
mapping between data and aesthetics (Figure 2.2). Importantly, a scale must be one-to-one,
such that for each specific data value there is exactly one aesthetics value and vice versa. If a
scale isn’t one-to-one, then the data visualization becomes ambiguous. 23



Mapping data onto aesthetics — example
Table 2.2: First 12 rows of a dataset listing daily temperature normals for four weather stations. Data source: NOAA.
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Jan 1 Chicago USW00014819 25.6

Jan 1 San Diego USW00093107 55.2
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2.2  Scales map data values onto aesthetics

To map data values onto aesthetics, we need to specify which data values correspond to
which specific aesthetics values. For example, if our graphic has an x axis, then we need to
specify which data values fall onto particular positions along this axis. Similarly, we may need
to specify which data values are represented by particular shapes or colors. This mapping
between data values and aesthetics values is created via scales. A scale defines a unique
mapping between data and aesthetics (Figure 2.2). Importantly, a scale must be one-to-one,
such that for each specific data value there is exactly one aesthetics value and vice versa. If a
scale isn’t one-to-one, then the data visualization becomes ambiguous.

Figure 2.2: Scales link data values to aesthetics. Here, the numbers 1 through 4 have been mapped onto a position
scale, a shape scale, and a color scale. For each scale, each number corresponds to a unique position, shape, or
color and vice versa.

Let’s put things into practice. We can take the dataset shown in Table 2.2, map temperature
onto the y axis, day of the year onto the x axis, location onto color, and visualize these
aesthetics with solid lines. The result is a standard line plot showing the temperature normals
at the four locations as they change during the year (Figure 2.3).

Figure 2.3: Daily temperature normals for four selected locations in the U.S. Temperature is mapped to the y axis,
day of the year to the x axis, and location to line color. Data source: NOAA.

Figure 2.3 is a fairly standard visualization for a temperature curve and likely the visualization
most data scientists would intuitively choose first. However, it is up to us which variables we
map onto which scales. For example, instead of mapping temperature onto the y axis and
location onto color, we can do the opposite. Because now the key variable of interest
(temperature) is shown as color, we need to show sufficiently large colored areas for the color
to convey useful information (Stone, Albers Szafir, and Setlur 2014). Therefore, for this
visualization I have chosen squares instead of lines, one for each month and location, and I
have colored them by the average temperature normal for each month (Figure 2.4).
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Mapping data onto aesthetics — example
Table 2.2: First 12 rows of a dataset listing daily temperature normals for four weather stations. Data source: NOAA.
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2.2  Scales map data values onto aesthetics

To map data values onto aesthetics, we need to specify which data values correspond to
which specific aesthetics values. For example, if our graphic has an x axis, then we need to
specify which data values fall onto particular positions along this axis. Similarly, we may need
to specify which data values are represented by particular shapes or colors. This mapping
between data values and aesthetics values is created via scales. A scale defines a unique
mapping between data and aesthetics (Figure 2.2). Importantly, a scale must be one-to-one,
such that for each specific data value there is exactly one aesthetics value and vice versa. If a
scale isn’t one-to-one, then the data visualization becomes ambiguous.

Figure 2.2: Scales link data values to aesthetics. Here, the numbers 1 through 4 have been mapped onto a position
scale, a shape scale, and a color scale. For each scale, each number corresponds to a unique position, shape, or
color and vice versa.

Let’s put things into practice. We can take the dataset shown in Table 2.2, map temperature
onto the y axis, day of the year onto the x axis, location onto color, and visualize these
aesthetics with solid lines. The result is a standard line plot showing the temperature normals
at the four locations as they change during the year (Figure 2.3).

Figure 2.3: Daily temperature normals for four selected locations in the U.S. Temperature is mapped to the y axis,
day of the year to the x axis, and location to line color. Data source: NOAA.

Figure 2.3 is a fairly standard visualization for a temperature curve and likely the visualization
most data scientists would intuitively choose first. However, it is up to us which variables we
map onto which scales. For example, instead of mapping temperature onto the y axis and
location onto color, we can do the opposite. Because now the key variable of interest
(temperature) is shown as color, we need to show sufficiently large colored areas for the color
to convey useful information (Stone, Albers Szafir, and Setlur 2014). Therefore, for this
visualization I have chosen squares instead of lines, one for each month and location, and I
have colored them by the average temperature normal for each month (Figure 2.4).

Figure 2.4: Monthly normal mean temperatures for four locations in the U.S. Data source: NOAA

I would like to emphasize that Figure 2.4 uses two position scales (month along the x axis and
location along the y axis) but neither is a continuous scale. Month is an ordered factor with 12
levels and location is an unordered factor with four levels. Therefore, the two position scales
are both discrete. For discrete position scales, we generally place the different levels of the
factor at an equal spacing along the axis. If the factor is ordered (as is here the case for
month), then the levels need to placed in the appropriate order. If the factor is unordered (as is
here the case for location), then the order is arbitrary, and we can choose any order we want.
I have ordered the locations from overall coldest (Chicago) to overall hottest (Death Valley) to
generate a pleasant staggering of colors. However, I could have chosen any other order and
the figure would have been equally valid.

Both Figures 2.3 and 2.4 used three scales in total, two position scales and one color scale.
This is a typical number of scales for a basic visualization, but we can use more than three
scales at once. Figure 2.5 uses five scales, two position scales, one color scale, one size
scale, and one shape scale, and all scales represent a different variable from the dataset.
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Mapping data onto aesthetics — example
Table 2.2: First 12 rows of a dataset listing daily temperature normals for four weather stations. Data source: NOAA.

Month Day Location Station ID Temperature
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To map data values onto aesthetics, we need to specify which data values correspond to
which specific aesthetics values. For example, if our graphic has an x axis, then we need to
specify which data values fall onto particular positions along this axis. Similarly, we may need
to specify which data values are represented by particular shapes or colors. This mapping
between data values and aesthetics values is created via scales. A scale defines a unique
mapping between data and aesthetics (Figure 2.2). Importantly, a scale must be one-to-one,
such that for each specific data value there is exactly one aesthetics value and vice versa. If a
scale isn’t one-to-one, then the data visualization becomes ambiguous.

Figure 2.2: Scales link data values to aesthetics. Here, the numbers 1 through 4 have been mapped onto a position
scale, a shape scale, and a color scale. For each scale, each number corresponds to a unique position, shape, or
color and vice versa.

Let’s put things into practice. We can take the dataset shown in Table 2.2, map temperature
onto the y axis, day of the year onto the x axis, location onto color, and visualize these
aesthetics with solid lines. The result is a standard line plot showing the temperature normals
at the four locations as they change during the year (Figure 2.3).

Figure 2.3: Daily temperature normals for four selected locations in the U.S. Temperature is mapped to the y axis,
day of the year to the x axis, and location to line color. Data source: NOAA.

Figure 2.3 is a fairly standard visualization for a temperature curve and likely the visualization
most data scientists would intuitively choose first. However, it is up to us which variables we
map onto which scales. For example, instead of mapping temperature onto the y axis and
location onto color, we can do the opposite. Because now the key variable of interest
(temperature) is shown as color, we need to show sufficiently large colored areas for the color
to convey useful information (Stone, Albers Szafir, and Setlur 2014). Therefore, for this
visualization I have chosen squares instead of lines, one for each month and location, and I
have colored them by the average temperature normal for each month (Figure 2.4).

Figure 2.4: Monthly normal mean temperatures for four locations in the U.S. Data source: NOAA

I would like to emphasize that Figure 2.4 uses two position scales (month along the x axis and
location along the y axis) but neither is a continuous scale. Month is an ordered factor with 12
levels and location is an unordered factor with four levels. Therefore, the two position scales
are both discrete. For discrete position scales, we generally place the different levels of the
factor at an equal spacing along the axis. If the factor is ordered (as is here the case for
month), then the levels need to placed in the appropriate order. If the factor is unordered (as is
here the case for location), then the order is arbitrary, and we can choose any order we want.
I have ordered the locations from overall coldest (Chicago) to overall hottest (Death Valley) to
generate a pleasant staggering of colors. However, I could have chosen any other order and
the figure would have been equally valid.

Both Figures 2.3 and 2.4 used three scales in total, two position scales and one color scale.
This is a typical number of scales for a basic visualization, but we can use more than three
scales at once. Figure 2.5 uses five scales, two position scales, one color scale, one size
scale, and one shape scale, and all scales represent a different variable from the dataset.

Both plots use three scales in total: two
position scales and one color scale
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Color as a tool to distinguish

Figure 4.2: Population growth in the U.S. from 2000 to 2010. States in the West and South have seen the largest
increases, whereas states in the Midwest and Northeast have seen much smaller increases or even, in the case of
Michigan, a decrease. Data source: U.S. Census Bureau

4.2  Color to represent data values

Grab color scales at
http://
colorbrewer2.org
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Color as a tool to highlight

Figure 4.8: From 2000 to 2010, the two neighboring southern states Texas and Louisiana have experienced among
the highest and lowest population growth across the U.S. Data source: U.S. Census Bureau

When working with accent colors, it is critical that the baseline colors do not compete for
attention. Notice how drab the baseline colors are in (Figure 4.8). Yet they work well to
support the accent color. It is easy to make the mistake of using baseline colors that are too
colorful, so that they end up competing for the reader’s attention against the accent colors.

Grab color scales at
http://
colorbrewer2.org
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Color to represent data values

Figure 4.4: Median annual income in Texas counties. The highest median incomes are seen in major Texas
metropolitan areas, in particular near Houston and Dallas. No median income estimate is available for Loving
County in West Texas and therefore that county is shown in gray. Data source: 2015 Five-Year American
Community Survey

In some cases, we need to visualize the deviation of data values in one of two directions
relative to a neutral midpoint. One straightforward example is a dataset containing both
positive and negative numbers. We may want to show those with different colors, so that it is
immediately obvious whether a value is positive or negative as well as how far in either
direction it deviates from zero. The appropriate color scale in this situation is a diverging color
scale. We can think of a diverging scale as two sequential scales stiched together at a
common midpoint, which usually is represented by a light color (Figure 4.5). Diverging scales
need to be balanced, so that the progression from light colors in the center to dark colors on
the outside is approximately the same in either direction. Otherwise, the perceived magnitude
of a data value would depend on whether it fell above or below the midpoint value.

Sequential color scale

Figure 4.6: Percentage of people identifying as white in Texas counties. Whites are in the majority in North and
East Texas but not in South or West Texas. Data source: 2010 Decennial U.S. Census

4.3  Color as a tool to highlight

Color can also be an effective tool to highlight specific elements in the data. There may be
specific categories or values in the dataset that carry key information about the story we want
to tell, and we can strengthen the story by emphasizing the relevant figure elements to the
reader. An easy way to achieve this emphasis is to color these figure elements in a color or
set of colors that vividly stand out against the rest of the figure. This effect can be achieved
with accent color scales, which are color scales that contain both a set of subdued colors and
a matching set of stronger, darker, and/or more saturated colors (Figure 4.7).

Divergent color scale

Okabe, M., and K. Ito. 2008. “Color Universal Design (CUD): How to
Make Figures and Presentations That Are Friendly to Colorblind
People.” http://jfly.iam.u-tokyo.ac.jp/color/.
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Visualizing amounts

5  Directory of visualizations

This chapter provides a quick visual overview of the various plots and charts that are
commonly used to visualize data. It is meant both to serve as a table of contents, in case you
are looking for a particular visualization whose name you may not know, and as a source of
inspiration, if you need to find alternatives to the figures you routinely make.

5.1  Amounts

The most common approach to visualizing amounts (i.e., numerical values shown for some
set of categories) is using bars, either vertically or horizontally arranged (Chapter 6). However,
instead of using bars, we can also place dots at the location where the corresponding bar
would end (Chapter 6).

If there are two or more sets of categories for which we want to show amounts, we can group
or stack the bars (Chapter 6). We can also map the categories onto the x and y axis and show
amounts by color, via a heatmap (Chapter 6).

5.2  Distributions

Histograms and density plots (Chapter 7) provide the most intuitive visualizations of a
distribution, but both require arbitrary parameter choices and can be misleading. Cumulative
densities and q-q plots (Chapter 8) always represent the data faithfully but can be more
difficult to interpret.
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Visualizing amounts — example 1

6  Visualizing amounts

In many scenarios, we are interested in the magnitude of some set of numbers. For example,
we might want to visualize the total sales volume of different brands of cars, or the total
number of people living in different cities, or the age of olympians performing different sports.
In all these cases, we have a set of categories (e.g., brands of cars, cities, or sports) and a
quantitative value for each category. I refer to these cases as visualizing amounts, because
the main emphasis in these visualizations will be on the magnitude of the quantitative values.
The standard visualization in this scenario is the bar plot, which comes in several variations,
including simple bars as well as grouped and stacked bars. Alternatives to the bar plot are the
dot plot and the heatmap.

6.1  Bar plots

To motivate the concept of a bar plot, consider the total ticket sales for the most popular
movies on a given weekend. Table 6.1 shows the top-five weekend gross ticket sales on the
Christmas weekend of 2017. The movie “Star Wars: The Last Jedi” was by far the most
popular movie on that weekend, outselling the fourth- and fifth-ranked movies “The Greatest
Showman” and “Ferdinand” by almost a factor of 10.

Table 6.1: Highest grossing movies for the weekend of December 22-24, 2017. Data source: Box Office Mojo
(http://www.boxofficemojo.com/). Used with permission

Rank Title Weekend gross

1 Star Wars: The Last Jedi $71,565,498

2 Jumanji: Welcome to the Jungle $36,169,328

3 Pitch Perfect 3 $19,928,525

4 The Greatest Showman $8,805,843

5 Ferdinand $7,316,746
This kind of data is commonly visualized with vertical bars. For each movie, we draw a bar
that starts at zero and extends all the way to the dollar value for that movie’s weekend gross
(Figure 6.1). This visualization is called a bar plot or bar chart.

Figure 6.1: Highest grossing movies for the weekend of December 22-24, 2017, displayed as a bar plot. Data
source: Box Office Mojo (http://www.boxofficemojo.com/). Used with permission

One problem we commonly encounter with vertical bars is that the labels identifying each bar
take up a lot of horizontal space. In fact, I had to make Figure 6.1 fairly wide and space out
the bars so that I could place the movie titles underneath. To save horizontal space, we could
place the bars closer together and rotate the labels (Figure 6.2). However, I am not a big
proponent of rotated labels. I find the resulting plots awkward and difficult to read. And, in my
experience, whenever the labels are too long to place horizontally they also don’t look good
rotated.

Figure 6.3: Highest grossing movies for the weekend of December 22-24, 2017, displayed as a horizontal bar plot.
Data source: Box Office Mojo (http://www.boxofficemojo.com/). Used with permission

Regardless of whether we place bars vertically or horizontally, we need to pay attention to the
order in which the bars are arranged. I often see bar plots where the bars are arranged
arbitrarily or by some criterion that is not meaningful in the context of the figure. Some
plotting programs arrange bars by default in alphabetic order of the labels, and other, similarly
arbitrary arrangements are possible (Figure 6.4). In general, the resulting figures are more
confusing and less intuitive than figures where bars are arranged in order of their size. 28



Visualizing amounts — example 2

Pay attention to the bar order. If the bars represent unordered categories,
order them by ascending or descending data values.

6.2  Grouped and stacked bars

All examples from the previous subsection showed how a quantitative amount varied with
respect to one categorical variable. Frequently, however, we are interested in two categorical
variables at the same time. For example, the U.S. Census Bureau provides median income
levels broken down by both age and race. We can visualize this dataset with a grouped bar
plot (Figure 6.7). In a grouped bar plot, we draw a group of bars at each position along the x
axis, determined by one categorical variable, and then we draw bars within each group
according to the other categorical variable.

Figure 6.7: 2016 median U.S. annual household income versus age group and race. Age groups are shown along
the x axis, and for each age group there are four bars, corresponding to the median income of asian, white,
hispanic, and black people, respectively. Data source: United States Census Bureau

Grouped bar plots show a lot of information at once and they can be confusing. In fact, even
though I have not labeled Figure 6.7 as bad or ugly, I find it difficult to read. In particular, it is
difficult to compare median incomes across age groups for a given racial group. So this figure
is only appropriate if we are primarily interested in the differences in income levels among
racial groups, separately for specific age groups. If we care more about the overall pattern of
income levels among racial groups, it may be preferable to show race along the x axis and
show ages as distinct bars within each racial group (Figure 6.8).

Figure 6.8: 2016 median U.S. annual household income versus age group and race. In contrast to Figure 6.7, now
race is shown along the x axis, and for each race we show seven bars according to the seven age groups. Data
source: United States Census Bureau

Both Figures 6.7 and 6.8 encode one categorical variable by position along the x axis and the
other by bar color. And in both cases, the encoding by position is easy to read while the
encoding by bar color requires more mental effort, as we have to mentally match the colors of
the bars against the colors in the legend. We can avoid this added mental effort by showing
four separate regular bar plots rather than one grouped bar plot (Figure 6.9). Which of these
various options we choose is ultimately a matter of taste. I would likely choose Figure 6.9,
because it circumvents the need for different bar colors.
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Figure 6.8: 2016 median U.S. annual household income versus age group and race. In contrast to Figure 6.7, now
race is shown along the x axis, and for each race we show seven bars according to the seven age groups. Data
source: United States Census Bureau

Both Figures 6.7 and 6.8 encode one categorical variable by position along the x axis and the
other by bar color. And in both cases, the encoding by position is easy to read while the
encoding by bar color requires more mental effort, as we have to mentally match the colors of
the bars against the colors in the legend. We can avoid this added mental effort by showing
four separate regular bar plots rather than one grouped bar plot (Figure 6.9). Which of these
various options we choose is ultimately a matter of taste. I would likely choose Figure 6.9,
because it circumvents the need for different bar colors.

Figure 6.9: 2016 median U.S. annual household income versus age group and race. Instead of displaying this data
as a grouped bar plot, as in Figures 6.7 and 6.8, we now show the data as four separate regular bar plots. This
choice has the advantage that we don’t need to encode either categorical variable by bar color. Data source:
United States Census Bureau

Instead of drawing groups of bars side-by-side, it is sometimes preferable to stack bars on
top of each other. Stacking is useful when the sum of the amounts represented by the
individual stacked bars is in itself a meaningful amount. So, while it would not make sense to
stack the median income values of Figure 6.7 (the sum of two median income values is not a
meaningful value), it might make sense to stack the weekend gross values of Figure 6.1 (the
sum of the weekend gross values of two movies is the total gross for the two movies
combined). Stacking is also appropriate when the individual bars represent counts. For
example, in a dataset of people, we can either count men and women separately or we can
count them together. If we stack a bar representing a count of women on top of a bar
representing a count of men, then the combined bar height represents the total count of
people regardless of gender.
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Figure 6.11: Life expectancies of countries in the Americas, for the year 2007. Data source: Gapminder projectFigure 6.12: Life expectancies of countries in the Americas, for the year 2007, shown as bars. This dataset is not
suitable for being visualized with bars. The bars are too long and they draw attention away from the key feature of
the data, the differences in life expectancy among the different countries. Data source: Gapminder project

Regardless of whether we use bars or dots, however, we need to pay attention to the ordering
of the data values. In Figures 6.11 and 6.12, the countries are ordered in descending order of
life expectancy. If we instead ordered them alphabetically, we’d end up with a disordered
cloud of points that is confusing and fails to convey a clear message (Figure 6.13).

This dataset is not suitable for being visualized with bars. The bars
are too long and they draw attention away from the key feature of the
data, the differences in life expectancy among the different countries.
Data source: Gapminder project
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Visualizing distributions

If there are two or more sets of categories for which we want to show amounts, we can group
or stack the bars (Chapter 6). We can also map the categories onto the x and y axis and show
amounts by color, via a heatmap (Chapter 6).

5.2  Distributions

Histograms and density plots (Chapter 7) provide the most intuitive visualizations of a
distribution, but both require arbitrary parameter choices and can be misleading. Cumulative
densities and q-q plots (Chapter 8) always represent the data faithfully but can be more
difficult to interpret.

Boxplots, violins, strip charts, and sina plots are useful when we want to visualize many
distributions at once and/or if we are primarily interested in overall shifts among the
distributions (Chapter 9.1). Stacked histograms and overlapping densities allow a more in-
depth comparison of a smaller number of distributions, though stacked histograms can be
difficult to interpret and are best avoided (Chapter 7.2). Ridgeline plots can be a useful
alternative to violin plots and are often useful when visualizing very large numbers of
distributions or changes in distributions over time (Chapter 9.2).

5.3  Proportions

Proportions can be visualized as pie charts, side-by-side bars, or stacked bars (Chapter 10),
and as in the case for amounts, bars can be arranged either vertically or horizontally. Pie
charts emphasize that the individual parts add up to a whole and highlight simple fractions.
However, the individual pieces are more easily compared in side-by-side bars. Stacked bars
look awkward for a single set of proportions, but can be useful when comparing multiple sets
of proportions (see below).

31



Visualizing distributions — examples

7  Visualizing distributions: Histograms and
density plots

We frequently encounter the situation where we would like to understand how a particular
variable is distributed in a dataset. To give a concrete example, we will consider the
passengers of the Titanic, a data set we encountered already in Chapter 6. There were
approximately 1300 passengers on the Titanic (not counting crew), and we have reported
ages for 756 of them. We might want to know how many passengers of what ages there were
on the Titanic, i.e., how many children, young adults, middle-aged people, seniors, and so on.
We call the relative proportions of different ages among the passengers the age distribution of
the passengers.

7.1  Visualizing a single distribution

We can obtain a sense of the age distribution among the passengers by grouping all
passengers into bins with comparable ages and then counting the number of passengers in
each bin. This procedure results in a table such as Table 7.1.

Table 7.1: Numbers of passenger with known age on the Titanic.

Age range Count

0–5 36

6–10 19

11–15 18

16–20 99

21–25 139

26–30 121

Age range Count

31–35 76

36–40 74

41–45 54

46–50 50

51–55 26

56–60 22

Age range Count

61–65 16

66–70 3

71–75 3

Figure 7.2: Histograms depend on the chosen bin width. Here, the same age distribution of Titanic passengers is
shown with four different bin widths: (a) one year; (b) three years; (c) five years; (d) fifteen years.

When making a histogram, always explore multiple bin widths.

Histograms have been a popular visualization option since at least the 18th century, in part
because they are easily generated by hand. More recently, as extensive computing power has
become available in everyday devices such as laptops and cell phones, we see them
increasingly being replaced by density plots. In a density plot, we attempt to visualize the
underlying probability distribution of the data by drawing an appropriate continuous curve
(Figure 7.3). This curve needs to be estimated from the data, and the most commonly used
method for this estimation procedure is called kernel density estimation. In kernel density
estimation, we draw a continuous curve (the kernel) with a small width (controlled by a
parameter called bandwidth) at the location of each data point, and then we add up all these
curves to obtain the final density estimate. The most widely used kernel is a Gaussian kernel
(i.e., a Gaussian bell curve), but there are many other choices.

When making a histogram, always explore multiple bin widths 32
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7  Visualizing distributions: Histograms and
density plots

We frequently encounter the situation where we would like to understand how a particular
variable is distributed in a dataset. To give a concrete example, we will consider the
passengers of the Titanic, a data set we encountered already in Chapter 6. There were
approximately 1300 passengers on the Titanic (not counting crew), and we have reported
ages for 756 of them. We might want to know how many passengers of what ages there were
on the Titanic, i.e., how many children, young adults, middle-aged people, seniors, and so on.
We call the relative proportions of different ages among the passengers the age distribution of
the passengers.

7.1  Visualizing a single distribution

We can obtain a sense of the age distribution among the passengers by grouping all
passengers into bins with comparable ages and then counting the number of passengers in
each bin. This procedure results in a table such as Table 7.1.

Table 7.1: Numbers of passenger with known age on the Titanic.

Age range Count

0–5 36

6–10 19

11–15 18

16–20 99

21–25 139

26–30 121

Age range Count

31–35 76

36–40 74

41–45 54

46–50 50

51–55 26

56–60 22

Age range Count

61–65 16

66–70 3

71–75 3

Figure 7.4: Kernel density estimates depend on the chosen kernel and bandwidth. Here, the same age distribution
of Titanic passengers is shown for four different combinations of these parameters: (a) Gaussian kernel, bandwidth
= 0.5; (b) Gaussian kernel, bandwidth = 2; (c) Gaussian kernel, bandwidth = 5; (d) Rectangular kernel, bandwidth =
2.

Density curves are usually scaled such that the area under the curve equals one. This
convention can make the y axis scale confusing, because it depends on the units of the x
axis. For example, in the case of the age distribution, the data range on the x axis goes from 0
to approximately 75. Therefore, we expect the mean height of the density curve to be 1/75 =
0.013. Indeed, when looking at the age density curves (e.g., Figure 7.4), we see that the y
values range from 0 to approximately 0.04, with an average of somewhere close to 0.01.

Kernel density estimates have one pitfall that we need to be aware of: They have a tendency
to produce the appearance of data where none exists, in particular in the tails. As a
consequence, careless use of density estimates can easily lead to figures that make
nonsensical statements. For example, if we don’t pay attention, we might generate a
visualization of an age distribution that includes negative ages (Figure 7.5).

Verify that density doesn’t predict the existence of nonsensical data 32



Visualizing multiple distributions

7.2  Visualizing multiple distributions at the same
time

In many scenarios we have multiple distributions we would like to visualize simultaneously.
For example, let’s say we’d like to see how the ages of Titanic passengers are distributed
between men and women. Were men and women passengers generally of the same age, or
was there an age difference between the genders? One commonly employed visualization
strategy in this case is a stacked histogram, where we draw the histogram bars for women on
top of the bars for men, in a different color (Figure 7.6).

Figure 7.6: Histogram of the ages of Titanic passengers stratified by gender. This figure has been labeled as “bad”
because stacked histograms are easily confused with overlapping histograms (see also Figure 7.7). In addition, the
heights of the bars representing female passengers cannot easily be compared to each other.

In my opinion, this type of visualization should be avoided. There are two key problems here:
First, from just looking at the figure, it is never entirely clear where exactly the bars begin. Do
they start where the color changes or are they meant to start at zero? In other words, are
there about 25 females of age 18–20 or are there almost 80? (The former is the case.)

Figure 7.9: Age distributions of male and female Titanic passengers, shown as proportion of the passenger total.
The colored areas show the density estimates of the ages of male and female passengers, respectively, and the
gray areas show the overall passenger age distribution.

Finally, when we want to visualize exactly two distributions, we can also make two separate
histograms, rotate them by 90 degrees, and have the bars in one histogram point into the
opposite direction of the other. This trick is commonly employed when visualizing age
distributions, and the resulting plot is usually called an age pyramid (Figure 7.10).

Figure 7.10: The age distributions of male and female Titanic passengers visualized as an age pyramid.

Importantly, this trick does not work when there are more than two distributions we want to
visualize at the same time. For multiple distributions, histograms tend to become highly
confusing, whereas density plots work well as long as the distributions are somewhat distinct
and contiguous. For example, to visualize the distribution of butterfat percentage among
cows from four different cattle breeds, density plots are fine (Figure 7.11).

Figure 7.11: Density estimates of the butterfat percentage in the milk of four cattle breeds. Data Source: Canadian
Record of Performance for Purebred Dairy Cattle

To visualize several distributions at once, kernel density plots will generally
work better than histograms.

To visualize several
distributions at once, kernel
density plots will generally
work better than
histograms.
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Visualizing many distributions

point and two error bars, we are losing a lot of information about the data. Second, it is not
immediately obvious what the points represent, even though most readers would likely guess
that they represent either the mean or the median. Third, it is definitely not obvious what the
error bars represent. Do they represent the standard deviation of the data, the standard error
of the mean, a 95% confidence interval, or something else altogether? There is no commonly
accepted standard. By reading the figure caption of Figure 9.1, we can see that they
represent here twice the standard deviation of the daily mean temperatures, meant to indicate
the range that contains approximately 95% of the data. However, error bars are more
commonly employed to visualize the standard error (or twice the standard error for a 95%
confidence interval), and it is easy for readers to confuse the standard error with the standard
deviation. The standard error quantifies how accurate our estimate of the mean is, whereas
the standard deviation estimates how much spread there is in the data around the mean. It is
possible for a dataset to have both a very small standard error of the mean and a very large
standard deviation. Fourth, symmetric error bars are misleading if there is any skew in the
data, which is the case here and almost always for real-world datasets.

Figure 9.1: Mean daily temperatures in Lincoln, Nebraska in 2016. Points represent the average daily mean
temperatures for each month, averaged over all days of the month, and error bars represent twice the standard
deviation of the daily mean temperatures within each month. This figure has been labeled as “bad” because
because error bars are conventionally used to visualize the uncertainty of an estimate, not the variability in a
population. Data source: Weather Underground
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Figure 9.3: Mean daily temperatures in Lincoln, Nebraska, visualized as boxplots.

Boxplots were invented by the statistician John Tukey in the early 1970s, and they quickly
gained popularity because they were highly informative while being easy to draw by hand.
Most data visualizations were drawn by hand at that time. However, with modern computing
and visualization capabilities, we are not limited to what is easily drawn by hand. Therefore,
more recently, we see boxplots being replaced by violin plots, which are equivalent to the
density estimates discussed in Chapter 7 but rotated by 90 degrees and then mirrored (Figure
9.4). Violins can be used whenever one would otherwise use a boxplot, and they provide a
much more nuanced picture of the data. In particular, violin plots will accurately represent
bimodal data whereas a boxplot will not.
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Figure 9.3: Mean daily temperatures in Lincoln, Nebraska, visualized as boxplots.

Boxplots were invented by the statistician John Tukey in the early 1970s, and they quickly
gained popularity because they were highly informative while being easy to draw by hand.
Most data visualizations were drawn by hand at that time. However, with modern computing
and visualization capabilities, we are not limited to what is easily drawn by hand. Therefore,
more recently, we see boxplots being replaced by violin plots, which are equivalent to the
density estimates discussed in Chapter 7 but rotated by 90 degrees and then mirrored (Figure
9.4). Violins can be used whenever one would otherwise use a boxplot, and they provide a
much more nuanced picture of the data. In particular, violin plots will accurately represent
bimodal data whereas a boxplot will not.

Figure 9.5: Mean daily temperatures in Lincoln, Nebraska, visualized as violin plots.

Because violin plots are derived from density estimates, they have similar shortcomings
(Chapter 7). In particular, they can generate the appearance that there is data where none
exists, or that the data set is very dense when actually it is quite sparse. We can try to
circumvent these issues by simply plotting all the individual data points directly, as dots
(Figure 9.6). Such a figure is called a strip chart. Strip charts are fine in principle, as long as
we make sure that we don’t plot too many points on top of each other. A simple solution to
overplotting is to spread out the points somewhat along the x axis, by adding some random
noise in the x dimension (Figure 9.7). This technique is also called jittering.
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Figure 9.3: Mean daily temperatures in Lincoln, Nebraska, visualized as boxplots.

Boxplots were invented by the statistician John Tukey in the early 1970s, and they quickly
gained popularity because they were highly informative while being easy to draw by hand.
Most data visualizations were drawn by hand at that time. However, with modern computing
and visualization capabilities, we are not limited to what is easily drawn by hand. Therefore,
more recently, we see boxplots being replaced by violin plots, which are equivalent to the
density estimates discussed in Chapter 7 but rotated by 90 degrees and then mirrored (Figure
9.4). Violins can be used whenever one would otherwise use a boxplot, and they provide a
much more nuanced picture of the data. In particular, violin plots will accurately represent
bimodal data whereas a boxplot will not.

Whenever the dataset is too sparse to justify the violin visualization, plotting
the raw data as individual points will be possible.

Finally, we can combine the best of both worlds by spreading out the dots in proportion to the
point density at a given y coordinate. This method, called a sina plot (Sidiropoulos et al.
2018), can be thought of as a hybrid between a violin plot and jittered points, and it shows
each individual point while also visualizing the distributions. I have here drawn the sina plots
on top of the violins to highlight the relationship between these two approaches (Figure 9.8).

Figure 9.8: Mean daily temperatures in Lincoln, Nebraska, visualized as a sina plot (combination of individual
points and violins). The points have been jittered along the x axis in proportion to the point density at the
respective temperature. The name sina plot is meant to honor Sina Hadi Sohi, a student at the University of
Copenhagen, Denmark, who wrote the first version of the code that researchers at the university used to make
such plots (Frederik O. Bagger, personal communication).

9.2  Visualizing distributions along the horizontal
axis
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respective temperature. The name sina plot is meant to honor Sina Hadi Sohi, a student at the University of
Copenhagen, Denmark, who wrote the first version of the code that researchers at the university used to make
such plots (Frederik O. Bagger, personal communication).

9.2  Visualizing distributions along the horizontal
axis

In Chapter 7, we visualized distributions along the horizontal axis using histograms and
density plots. Here, we will expand on this idea by staggering the distribution plots in the
vertical direction. The resulting visualization is called a ridgeline plot, because these plots
look like mountain ridgelines. Ridgeline plots tend to work particularly well if want to show
trends in distributions over time.

The standard ridgeline plot uses density estimates (Figure 9.9). It is quite closely related to the
violin plot, but frequently evokes a more intuitive understanding of the data. For example, the
two clusters of temperatures around 35 degrees and 50 degrees Fahrenheit in November are
much more obvious in Figure 9.9 than in Figure 9.5.

Figure 9.9: Temperatures in Lincoln, Nebraska, in 2016, visualized as a ridgeline plot. For each month, we show the
distribution of daily mean temperatures measured in Fahrenheit. Original figure concept: Wehrwein (2017).

Because the x axis shows the response variable and the y axis shows the grouping variable,
there is no separate axis for the density estimates in a ridgeline plot. Density estimates are
shown alongside the grouping variable. This is no different from the violin plot, where
densities are also shown alongside the grouping variable, without a separate, explicit scale. In
both cases, the purpose of the plot is not to show specific density values but instead to allow
for easy comparison of density shapes and relative heights across groups.
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Visualizing proportions

Figure 10.1: Party composition of the 8th German Bundestag, 1976–1980, visualized as a pie chart. This
visualization shows clearly that the ruling coalition of SPD and FDP had a small majority over the opposition
CDU/CSU.

A pie chart breaks a circle into slices such that the area of each slice is proportional to the
fraction of the total it represents. The same procedure can be performed on a rectangle, and
the result is a stacked bar chart (Figure 10.2). Depending on whether we slice the bar
vertically or horizontally, we obtain vertically stacked bars (Figure 10.2a) or horizontally
stacked bars (Figure 10.2b).
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Figure 10.1: Party composition of the 8th German Bundestag, 1976–1980, visualized as a pie chart. This
visualization shows clearly that the ruling coalition of SPD and FDP had a small majority over the opposition
CDU/CSU.

A pie chart breaks a circle into slices such that the area of each slice is proportional to the
fraction of the total it represents. The same procedure can be performed on a rectangle, and
the result is a stacked bar chart (Figure 10.2). Depending on whether we slice the bar
vertically or horizontally, we obtain vertically stacked bars (Figure 10.2a) or horizontally
stacked bars (Figure 10.2b).

Figure 10.2: Party composition of the 8th German Bundestag, 1976–1980, visualized as stacked bars. (a) Bars
stacked vertically. (b) Bars stacked horizontally. It is not immediately obvious that SPD and FDP jointly had more
seats than CDU/CSU.

We can also take the bars from Figure 10.2a and place them side-by-side rather than stacking
them on top of each other. This visualization makes it easier to perform a direct comparison of
the three groups, though it obscures other aspects of the data (Figure 10.3). Most importantly,
in a side-by-side bar plot the relationship of each bar to the total is not visually obvious.
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Figure 10.2: Party composition of the 8th German Bundestag, 1976–1980, visualized as stacked bars. (a) Bars
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seats than CDU/CSU.

We can also take the bars from Figure 10.2a and place them side-by-side rather than stacking
them on top of each other. This visualization makes it easier to perform a direct comparison of
the three groups, though it obscures other aspects of the data (Figure 10.3). Most importantly,
in a side-by-side bar plot the relationship of each bar to the total is not visually obvious.

Figure 10.3: Party composition of the 8th German Bundestag, 1976–1980, visualized as side-by-side bars. As in
Figure 10.2, it is not immediately obvious that SPD and FDP jointly had more seats than CDU/CSU.

Many authors categorically reject pie charts and argue in favor of side-by-side or stacked
bars. Others defend the use of pie charts in some applications. My own opinion is that none
of these visualizations is consistently superior over any other. Depending on the features of
the dataset and the specific story you want to tell, you may want to favor one or the other
approach. In the case of the 8th German Bundestag, I think that a pie chart is the best option.
It shows clearly that the ruling coalition of SPD and FDP jointly had a small majority over the
CDU/CSU (Figure 10.1). This fact is not visually obvious in any of the other plots (Figures 10.2
and 10.3).

In general, pie charts work well when the goal is to emphasize simple fractions, such as one-
half, one-third, or one-quarter. They also work well when we have very small datasets. A
single pie chart, as in Figure 10.1, looks just fine, but a single column of stacked bars, as in
Figure 10.2a, looks awkward. Stacked bars, on the other hand, can work for side-by-side
comparisons of multiple conditions or in a time series, and side-by-side bars are preferred
when we want to directly compare the individual fractions to each other. A summary of the
various pros and cons of pie charts, stacked bars, and side-by-side bars is provided in Table
10.1.
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the dataset and the specific story you want to tell, you may want to favor one or the other
approach. In the case of the 8th German Bundestag, I think that a pie chart is the best option.
It shows clearly that the ruling coalition of SPD and FDP jointly had a small majority over the
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In general, pie charts work well when the goal is to emphasize simple fractions, such as one-
half, one-third, or one-quarter. They also work well when we have very small datasets. A
single pie chart, as in Figure 10.1, looks just fine, but a single column of stacked bars, as in
Figure 10.2a, looks awkward. Stacked bars, on the other hand, can work for side-by-side
comparisons of multiple conditions or in a time series, and side-by-side bars are preferred
when we want to directly compare the individual fractions to each other. A summary of the
various pros and cons of pie charts, stacked bars, and side-by-side bars is provided in Table
10.1.

Table 10.1: Pros and cons of common approaches to visualizing proportions: pie charts, stacked bars, and side-by-side bars.

Pie chart Stacked bars Side-by-side bars

Clearly visualizes the data as
proportions of a whole

✔ ✔ ✖

Allows easy visual comparison of
the relative proportions

✖ ✖ ✔

Visually emphasizes simple
fractions, such as 1/2, 1/3, 1/4

✔ ✖ ✖

Looks visually appealing even for
very small datasets

✔ ✖ ✔

Works well when the whole is
broken into many pieces

✖ ✖ ✔

Works well for the visualization of
many sets of proportions or time
series of proportions

✖ ✔ ✖

10.2  A case for side-by-side bars

I will now demonstrate a case where pie charts fail. This example is modeled after a critique
of pie charts originally posted on Wikipedia (Wikipedia 2007). Consider the hypothetical
scenario of five companies, A, B, C, D, and E, who all have roughly comparable market share
of approximately 20%. Our hypothetical dataset lists the market share of each company for
three consecutive years. When we visualize this dataset with pie charts, it is difficult to see
what exactly is going on (Figure 10.4). It appears that the market share of company A is
growing and the one of company E is shrinking, but beyond this one observation we can’t tell
what’s going on. In particular, it is unclear how exactly the market shares of the different
companies compare within each year.
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When side-by-side bars win

Figure 10.4: Market share of five hypothetical companies, A–E, for the years 2015–2017, visualized as pie charts.
This visualization has two major problems: 1. A comparison of relative market share within years is nearly
impossible. 2. Changes in market share across years are difficult to see.

The picture becomes a little clearer when we switch to stacked bars (Figure 10.5). Now the
trends of a growing market share for company A and a shrinking market share for company E
are clearly visible. However, the relative market shares of the five companies within each year
are still hard to compare. And it is difficult to compare the market shares of companies B, C,
and D across years, because the bars are shifted relative to each other across years. This is a
general problem of stacked-bar plots, and the main reason why I normally do not recommend
this type of visualization.
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Figure 10.4: Market share of five hypothetical companies, A–E, for the years 2015–2017, visualized as pie charts.
This visualization has two major problems: 1. A comparison of relative market share within years is nearly
impossible. 2. Changes in market share across years are difficult to see.

The picture becomes a little clearer when we switch to stacked bars (Figure 10.5). Now the
trends of a growing market share for company A and a shrinking market share for company E
are clearly visible. However, the relative market shares of the five companies within each year
are still hard to compare. And it is difficult to compare the market shares of companies B, C,
and D across years, because the bars are shifted relative to each other across years. This is a
general problem of stacked-bar plots, and the main reason why I normally do not recommend
this type of visualization.

Figure 10.5: Market share of five hypothetical companies for the years 2015–2017, visualized as stacked bars. This
visualization has two major problems: 1. A comparison of relative market shares within years is difficult. 2.
Changes in market share across years are difficult to see for the middle companies B, C, and D, because the
location of the bars changes across years.

For this hypothetical data set, side-by-side bars are the best choice (Figure 10.6). This
visualization highlights that both companies A and B have increased their market share from
2015 to 2017 while both companies D and E have reduced theirs. It also shows that market
shares increase sequentially from company A to E in 2015 and similarly decrease in 2017.

Figure 10.6: Market share of five hypothetical companies for the years 2015–2017, visualized as side-by-side bars.

10.3  A case for stacked bars and stacked
densities

In Section 10.2, I wrote that I don’t normally recommend sequences of stacked bars, because
the location of the internal bars shifts along the sequence. However, the problem of shifting
internal bars disappears if there are only two bars in each stack, and in those cases the
resulting visualization can be quite clear. As an example, consider the proportion of women in
a country’s national parliament. We will specifically look at the African country Rwanda, which
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the location of the internal bars shifts along the sequence. However, the problem of shifting
internal bars disappears if there are only two bars in each stack, and in those cases the
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Humans are not good at
computing integrals in their heads,
so comparing lengths is much
easier than comparing areas.
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Visualizing x-y relationships
higher body mass to have longer heads. The bird with the longest head falls close to the
maximum body mass observed, and the bird with the shortest head falls close to the
minimum body mass observed.

Figure 12.1: Head length (measured from the tip of the bill to the back of the head, in mm) versus body mass (in
gram), for 123 blue jays. Each dot corresponds to one bird. There is a moderate tendency for heavier birds to have
longer heads. Data source: Keith Tarvin, Oberlin College

The blue jay dataset contains both male and female birds, and we may want to know whether
the overall relationship between head length and body mass holds up separately for each sex.
To address this question, we can color the points in the scatter plot by the sex of the bird
(Figure 12.2). This figure reveals that the overall trend in head length and body mass is at least
in part driven by the sex of the birds. At the same body mass, females tend to have shorter
heads than males. At the same time, females tend to be lighter than males on average.
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higher body mass to have longer heads. The bird with the longest head falls close to the
maximum body mass observed, and the bird with the shortest head falls close to the
minimum body mass observed.

Figure 12.1: Head length (measured from the tip of the bill to the back of the head, in mm) versus body mass (in
gram), for 123 blue jays. Each dot corresponds to one bird. There is a moderate tendency for heavier birds to have
longer heads. Data source: Keith Tarvin, Oberlin College

The blue jay dataset contains both male and female birds, and we may want to know whether
the overall relationship between head length and body mass holds up separately for each sex.
To address this question, we can color the points in the scatter plot by the sex of the bird
(Figure 12.2). This figure reveals that the overall trend in head length and body mass is at least
in part driven by the sex of the birds. At the same body mass, females tend to have shorter
heads than males. At the same time, females tend to be lighter than males on average.

Figure 12.2: Head length versus body mass for 123 blue jays. The birds’ sex is indicated by color. At the same
body mass, male birds tend to have longer heads (and specifically, longer bills) than female birds. Data source:
Keith Tarvin, Oberlin College

Because the head length is defined as the distance from the tip of the bill to the back of the
head, a larger head length could imply a longer bill, a larger skull, or both. We can disentangle
bill length and skull size by looking at another variable in the dataset, the skull size, which is
similar to the head length but excludes the bill. As we are already using the x position for
body mass, the y position for head length, and the dot color for bird sex, we need another
aesthetic to which we can map skull size. One option is to use the size of the dots, resulting
in a visualization called a bubble chart (Figure 12.3).
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To address this question, we can color the points in the scatter plot by the sex of the bird
(Figure 12.2). This figure reveals that the overall trend in head length and body mass is at least
in part driven by the sex of the birds. At the same body mass, females tend to have shorter
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Figure 12.2: Head length versus body mass for 123 blue jays. The birds’ sex is indicated by color. At the same
body mass, male birds tend to have longer heads (and specifically, longer bills) than female birds. Data source:
Keith Tarvin, Oberlin College

Because the head length is defined as the distance from the tip of the bill to the back of the
head, a larger head length could imply a longer bill, a larger skull, or both. We can disentangle
bill length and skull size by looking at another variable in the dataset, the skull size, which is
similar to the head length but excludes the bill. As we are already using the x position for
body mass, the y position for head length, and the dot color for bird sex, we need another
aesthetic to which we can map skull size. One option is to use the size of the dots, resulting
in a visualization called a bubble chart (Figure 12.3).

Figure 12.3: Head length versus body mass for 123 blue jays. The birds’ sex is indicated by color, and the birds’
skull size by symbol size. Head-length measurements include the length of the bill while skull-size measurements
do not. Head length and skull size tend to be correlated, but there are some birds with unusually long or short bills
given their skull size. Data source: Keith Tarvin, Oberlin College

Bubble charts have the disadvantage that they show the same types of variables, quantitative
variables, with two different types of scales, position and size. This makes it difficult to
visually ascertain the strengths of associations between the various variables. Moreover,
differences between data values encoded as bubble size are harder to perceive than
differences between data values encoded as position. Because even the largest bubbles need
to be somewhat small compared to the total figure size, the size differences between even the
largest and the smallest bubbles are necessarily small. Consequently, smaller differences in
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Scatter matrix plot

data values will correspond to very small size differences that can be virtually impossible to
see. In Figure 12.3, I used a size mapping that visually amplified the difference between the
smallest skulls (around 28mm) and the largest skulls (around 34mm), and yet it is difficult to
determine what the relationship is between skull size and either body mass or head length.

As an alternative to a bubble chart, it may be preferable to show an all-against-all matrix of
scatter plots, where each individual plot shows two data dimensions (Figure 12.4). This figure
shows clearly that the relationship between skull size and body mass is comparable for
female and male birds except that the female birds tend to be somewhat smaller. However,
the same is not true for the relationship between head length and body mass. There is a clear
separation by sex. Male birds tend to have longer bills than female birds, all else equal.

Figure 12.4: All-against-all scatter plot matrix of head length, body mass, and skull size, for 123 blue jays. This
figure shows the exact same data as Figure 12.2. However, because we are better at judging position than symbol
size, correlations between skull size and the other two variables are easier to perceive in the pairwise scatter plots
than in Figure 12.2. Data source: Keith Tarvin, Oberlin College

12.2  Correlograms
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Correlograms

When we have more than three to four quantiative variables, all-against-all scatter plot
matrices quickly become unwieldy. In this case, it is more useful to quantify the amount of
association between pairs of variables and visualize this quantity rather than the raw data.
One common way to do this is to calculate correlation coefficients. The correlation coefficient
r is a number between -1 and 1 that measures to what extent two variables covary. A value of
r = 0 means there is no association whatsoever, and a value of either 1 or -1 indicates a
perfect association. The sign of the correlation coefficient indicates whether the variables are
correlated (larger values in one variable coincide with larger values in the other) or
anticorrelated (larger values in one variable coincide with smaller values in the other). To
provide visual examples of what different correlation strengths look like, in Figure 12.5 I show
randomly generated sets of points that differ widely in the degree to which the x and y values
are correlated.

Figure 12.5: Examples of correlations of different magnitude and direction, with associated correlation coefficient r.
In both rows, from left to right correlations go from weak to strong. In the top row the correlations are positive
(larger values for one quantity are associated with larger values for the other) and in the bottom row they are
negative (larger values for one quantity are associated with smaller values for the other). In all six panels, the sets
of x and y values are identical, but the pairings between individual x and y values have been reshuffled to generate
the specified correlation coefficients.

The correlation coefficient is defined as

( − )( − )
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Figure 12.6: Correlations in mineral content for 214 samples of glass fragments obtained during forensic work. The
dataset contains seven variables measuring the amounts of magnesium (Mg), calcium (Ca), iron (Fe), potassium
(K), sodium (Na), aluminum (Al), and barium (Ba) found in each glass fragment. The colored tiles represents the
correlations between pairs of these variables. Data source: B. German

One weakness of the correlogram of Figure 12.6 is that low correlations, i.e. correlations with
absolute value near zero, are not as visually suppressed as they should be. For example,
magnesium (Mg) and potassium (K) are not at all correlated but Figure 12.6 doesn’t
immediately show this. To overcome this limitation, we can display the correlations as colored
circles and scale the circle size with the absolute value of the correlation coefficient (Figure
12.6). In this way, low correlations are suppressed and high correlations stand out better.
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12.6). In this way, low correlations are suppressed and high correlations stand out better.
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Dimension reduction

quantities will relate first and foremost to the overall size of each person. All else being equal,
a larger person will be taller, weigh more, have longer arms and legs, and larger waist, hip,
and chest circumferences. The next important dimension is going to be the person’s sex.
Male and female measurements are substantially different for persons of comparable size. For
example, a woman will tend to have higher hip circumference than a man, all else being
equal.

There are many techniques for dimension reduction. I will discuss only one technique here,
the most widely used one, called principal components analysis (PCA). PCA introduces a new
set of variables (called principal components, PCs) by linear combination of the original
variables in the data, standardized to zero mean and unit variance (see Figure 12.8 for a toy
example in two dimensions). The PCs are chosen such that they are uncorrelated, and they
are ordered such that the first component captures the largest possible amount of variation in
the data, and subsequent components capture increasingly less. Usually, key features in the
data can be seen from only the first two or three PCs.

Figure 12.8: Example principal components (PC) analysis in two dimensions. (a) The original data. As example
data, I am using the head-length and skull-size measurements from the blue jays dataset. Female and male birds
are distinguished by color, but this distinction has no effect on the PC analysis. (b) As the first step in PCA, we
scale the original data values to zero mean and unit variance. We then we define new variables (the principal
components, PCs) along the directions of maximum variation in the data. (c) Finally, we project the data into the
new coordinates. Mathematically, this projection is equivalent to a rotation of the data points around the origin. In
the 2D example shown here, the data points are rotated clockwise by 45 degrees.

When we perform PCA, we are generally interested in two pieces of information: (i) the
composition of the PCs and (ii) the location of the individual data points in the principal
components space. Let’s look at these two pieces in a PC analysis of the forensic glass
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Dimension reduction
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composition of the PCs and (ii) the location of the individual data points in the principal
components space. Let’s look at these two pieces in a PC analysis of the forensic glass

Figure 12.6: Correlations in mineral content for 214 samples of glass fragments obtained during forensic work. The
dataset contains seven variables measuring the amounts of magnesium (Mg), calcium (Ca), iron (Fe), potassium
(K), sodium (Na), aluminum (Al), and barium (Ba) found in each glass fragment. The colored tiles represents the
correlations between pairs of these variables. Data source: B. German

One weakness of the correlogram of Figure 12.6 is that low correlations, i.e. correlations with
absolute value near zero, are not as visually suppressed as they should be. For example,
magnesium (Mg) and potassium (K) are not at all correlated but Figure 12.6 doesn’t
immediately show this. To overcome this limitation, we can display the correlations as colored
circles and scale the circle size with the absolute value of the correlation coefficient (Figure
12.6). In this way, low correlations are suppressed and high correlations stand out better.

Next, we project the original data into the principal components space (Figure 12.10). We see
a clear clustering of distinct types of glass fragments in this plot. Fragments from both
headlamps and windows fall into clearly delineated regions in the PC plot, with few outliers.
Fragments from tableware and from containers are a little more spread out, but nevertheless
clearly distinct from both headlamp and window fragments. By comparing Figure 12.10 with
Figure 12.9, we can conclude that window samples tend to have higher than average
magnesium content and lower than average barium, aluminum, and sodium content, whereas
the opposite is true for headlamp samples.

Figure 12.10: Composition of individual glass fragments visualized in the principal components space defined in
Figure 12.9. We see that the different types of glass samples cluster at characteristic values of PC 1 and 2. In
particular, headlamps are characterized by a negative PC 1 value whereas windows tend to have a positive PC 1
value. Tableware and containers have PC 1 values close to zero and tend to have positive PC 2 values. However,
there are a few exceptions where container fragments have both a negative PC 1 value and a negative PC 2 value.
These are fragments whose composition drastically differs from all other fragments analyzed.

12.4  Paired data
A special case of multivariate quantitative data is paired data: Data where there are two or
more measurements of the same quantity under slightly different conditions. Examples
include two comparable measurements on each subject (e.g., the length of the right and the
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Paired data
Scatterplots and slopegraphs are two main choices for plotting paired
data.

Figure 12.11: Carbon dioxide (CO ) emissions per person in 1970 and 2010, for 166 countries. Each dot represents
one country. The diagonal line represents identical CO  emissions in 1970 and 2010. The points are systematically
shifted upwards relative to the diagonal line: In the majority of countries, emissions were higher in 2010 than in
1970. Data source: Carbon Dioxide Information Analysis Center

Scatter plots such as Figure 12.11 work well when we have a large number of data points
and/or are interested in a systematic deviation of the entire data set from the null expectation.
By contrast, if we have only a small number of observations and are primarily interested in the
identity of each individual case, a slopegraph may be a better choice. In a slopegraph, we
draw individual measurements as dots arranged into two columns and indicate pairings by
connecting the paired dots with a line. The slope of each line highlights the magnitude and
direction of change. Figure 12.12 uses this approach to show the ten countries with the
largest difference in CO  emissions per person from 2000 to 2010.

2

2

2

The last plot shows that slopegraph can accomodate short time
series.
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Figure 12.12: Carbon dioxide (CO ) emissions per person in 2000 and 2010, for the ten countries with the largest
difference between these two years. Data source: Carbon Dioxide Information Analysis Center

Slopegraphs have one important advantage over scatter plots: They can be used to compare
more than two measurements at a time. For example, we can modify Figure 12.12 to show
CO  emissions at three time points, here the years 2000, 2005, and 2010 (Figure 12.13). This
choice highlights both countries with a large change in emissions over the entire decade as
well as countries such as Qatar or Trinidad and Tobago for which there is a large difference in
the trend seen for the first five-year interval and the second one.

2

2

The last plot shows that slopegraph can accomodate short time
series.
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Figure 12.13: CO  emissions per person in 2000, 2005, and 2010, for the ten countries with the largest difference
between the years 2000 and 2010. Data source: Carbon Dioxide Information Analysis Center
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series.
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Visualizing time series — univariate

Figure 13.1: Monthly submissions to the preprint server bioRxiv, from its inception in November 2014 until April
2018. Each dot represents the number of submissions in one month. There has been a steady increase in
submission volume throughout the entire 4.5-year period. Data source: Jordan Anaya, http://www.prepubmed.org/

There is an important difference however between Figure 13.1 and the scatter plots discussed
in Chapter 12. In Figure 13.1, the dots are spaced evenly along the x axis, and there is a
defined order among them. Each dot has exactly one left and one right neighbor (except the
leftmost and rightmost points which have only one neighbor each). We can visually emphasize
this order by connecting neighboring points with lines (Figure 13.2). Such a plot is called a line
graph.
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Visualizing time series — univariate

Figure 13.1: Monthly submissions to the preprint server bioRxiv, from its inception in November 2014 until April
2018. Each dot represents the number of submissions in one month. There has been a steady increase in
submission volume throughout the entire 4.5-year period. Data source: Jordan Anaya, http://www.prepubmed.org/

There is an important difference however between Figure 13.1 and the scatter plots discussed
in Chapter 12. In Figure 13.1, the dots are spaced evenly along the x axis, and there is a
defined order among them. Each dot has exactly one left and one right neighbor (except the
leftmost and rightmost points which have only one neighbor each). We can visually emphasize
this order by connecting neighboring points with lines (Figure 13.2). Such a plot is called a line
graph.

Figure 13.2: Monthly submissions to the preprint server bioRxiv, shown as dots connected by lines. The lines do
not represent data but are only meant as a guide to the eye. By connecting the individual dots with lines, we
emphasize that there is an order between the dots, each dot has exactly one neighbor that comes before and one
that comes after. Data source: Jordan Anaya, http://www.prepubmed.org/

Some people object to drawing lines between points because the lines do not represent
observed data. In particular, if there are only a few observations spaced far apart, had
observations been made at intermediate times they would probably not have fallen exactly
onto the lines shown. Thus, in a sense, the lines correspond to made-up data. Yet they may
help with perception when the points are spaced far apart or are unevenly spaced. We can
somewhat resolve this dilemma by pointing it out in the figure caption, for example by writing
“lines are meant as a guide to the eye” (see caption of Figure 13.2).

Using lines to represent time series is generally accepted practice, however, and frequently
the dots are omitted altogether (Figure 13.3). Without dots, the figure places more emphasis
on the overall trend in the data and less on individual observations. A figure without dots is
also visually less busy. In general, the denser the time series, the less important it is to show
individual obserations with dots. For the preprint dataset shown here, I think omitting the dots
is fine.
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Visualizing time series — univariate
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Some people object to drawing lines between points because the lines do not represent
observed data. In particular, if there are only a few observations spaced far apart, had
observations been made at intermediate times they would probably not have fallen exactly
onto the lines shown. Thus, in a sense, the lines correspond to made-up data. Yet they may
help with perception when the points are spaced far apart or are unevenly spaced. We can
somewhat resolve this dilemma by pointing it out in the figure caption, for example by writing
“lines are meant as a guide to the eye” (see caption of Figure 13.2).

Using lines to represent time series is generally accepted practice, however, and frequently
the dots are omitted altogether (Figure 13.3). Without dots, the figure places more emphasis
on the overall trend in the data and less on individual observations. A figure without dots is
also visually less busy. In general, the denser the time series, the less important it is to show
individual obserations with dots. For the preprint dataset shown here, I think omitting the dots
is fine.Figure 13.3: Monthly submissions to the preprint server bioRxiv, shown as a line graph without dots. Omitting the

dots emphasizes the overall temporal trend while de-emphasizing individual observations at specific time points. It
is particularly useful when the time points are spaced very densely. Data source: Jordan Anaya,
http://www.prepubmed.org/

We can also fill the area under the curve with a solid color (Figure 13.4). This choice further
emphasizes the overarching trend in the data, because it visually separates the area above
the curve from the area below. However, this visualization is only valid if the y axis starts at
zero, so that the height of the shaded area at each time point represents the data value at that
time point.
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Visualizing time series — univariate
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We can also fill the area under the curve with a solid color (Figure 13.4). This choice further
emphasizes the overarching trend in the data, because it visually separates the area above
the curve from the area below. However, this visualization is only valid if the y axis starts at
zero, so that the height of the shaded area at each time point represents the data value at that
time point.

For dense time series, connect the
dots and omit them.
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Visualizing time series — multivariate

Figure 13.5: Monthly submissions to three preprint servers covering biomedical research: bioRxiv, the q-bio section
of arXiv, and PeerJ Preprints. Each dot represents the number of submissions in one month to the respective
preprint server. This figure is labeled “bad” because the three time courses visually interfere with each other and
are difficult to read. Data source: Jordan Anaya, http://www.prepubmed.org/

Figure 13.6: Monthly submissions to three preprint servers covering biomedical research. By connecting the dots
in Figure 13.5 with lines, we help the viewer follow each individual time course. Data source: Jordan Anaya,
http://www.prepubmed.org/
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Figure 13.6: Monthly submissions to three preprint servers covering biomedical research. By connecting the dots
in Figure 13.5 with lines, we help the viewer follow each individual time course. Data source: Jordan Anaya,
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Figure 13.6 represents an acceptable visualization of the preprints dataset. However, the
separate legend creates unnecessary cognitive load. We can reduce this cognitive load by
labeling the lines directly (Figure 13.7). We have also eliminated the individual dots in this
figure, for a result that is much more streamlined and easy to read than the original starting
point, Figure 13.5.

Figure 13.7: Monthly submissions to three preprint servers covering biomedical research. By direct labeling the
lines instead of providing a legend, we have reduced the cognitive load required to read the figure. And the
elimination of the legend removes the need for points of different shapes. Thus, we could streamline the figure
further by eliminating the dots. Data source: Jordan Anaya, http://www.prepubmed.org/

Line graphs are not limited to time series. They are appropriate whenever the data points
have a natural order that is reflected in the variable shown along the x axis, so that
neighboring points can be connected with a line. This situation arises, for example, in dose–
response curves, where we measure how changing some numerical parameter in an
experiment (the dose) affects an outcome of interest (the response). Figure 13.8 shows a
classic experiment of this type, measuring oat yield in response to increasing amounts of
fertilization. The line-graph visualization highlights how the dose–response curve has a similar
shape for the three oat varieties considered but differs in the starting point in the absence of
fertilization (i.e., some varieties have naturally higher yield than others).
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Line graphs are not limited to time series. They are appropriate whenever the data points
have a natural order that is reflected in the variable shown along the x axis, so that
neighboring points can be connected with a line. This situation arises, for example, in dose–
response curves, where we measure how changing some numerical parameter in an
experiment (the dose) affects an outcome of interest (the response). Figure 13.8 shows a
classic experiment of this type, measuring oat yield in response to increasing amounts of
fertilization. The line-graph visualization highlights how the dose–response curve has a similar
shape for the three oat varieties considered but differs in the starting point in the absence of
fertilization (i.e., some varieties have naturally higher yield than others).

Consider replacing legends with
direct labeling.

Make sure it is easy to compare
objects of interest
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Visualizing geospatial data

As a simple example, consider the population density (persons per square kilometer) across
the United States. We take the population number for each county in the U.S., divide it by the
county’s surface area, and then draw a map where the color of each county corresponds to
the ratio between population number and area (Figure 15.11). We can see how the the major
cities on the east and the west coast are the most populated areas of the U.S., the great
plains and western states have low population densities, and the state of Alaska is the least
populated of all.

Figure 15.11: Population density in every U.S. county, shown as a choropleth map. Population density is reported
as persons per square kilometer. Data source: 2015 Five-Year American Community Survey

Figure 15.11 uses light colors to represent low population densities and dark colors to
represent high densities, so that high-density metropolitan areas stand out as dark colors on
a background of light colors. We tend to associate darker colors with higher intensities when
the background color of the figure is light. However, we can also pick a color scale where high
values light up on a dark background (Figure 15.12). As longs as the lighter colors fall into the
red-yellow spectrum, so that they appear to be glowing, they can be perceived as
representing higher intensities. As a general principle, when figures are meant to be printed
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Figure 15.11 uses light colors to represent low population densities and dark colors to
represent high densities, so that high-density metropolitan areas stand out as dark colors on
a background of light colors. We tend to associate darker colors with higher intensities when
the background color of the figure is light. However, we can also pick a color scale where high
values light up on a dark background (Figure 15.12). As longs as the lighter colors fall into the
red-yellow spectrum, so that they appear to be glowing, they can be perceived as
representing higher intensities. As a general principle, when figures are meant to be printed

on white paper then light-colored background areas (as in Figure 15.11) will typically work
better. For online viewing or on a dark background, dark-colored background areas (as in
Figure 15.12) may be preferable.

Figure 15.12: Population density in every U.S. county, shown as a choropleth map. This map is identical to Figure
15.11 except that now the color scale uses light colors for high population densities and dark colors for low
population densities. Data source: 2015 Five-Year American Community Survey

Choropleths work best when the coloring represents a density (i.e., some quantity divided by
surface area, as in Figures 15.11 and 15.12). We perceive larger areas as corresponding to
larger amounts than smaller areas (see also the chapter on proportional ink, Chapter 17), and
shading by density corrects for this effect. However, in practice, we often see choropleths
colored according to some quantity that is not a density. For example, in Figure 4.4 I showed
a choropleth of median annual income in Texas counties. Such choropleth maps can be
appropriate when they are prepared with caution. There are two conditions under which we
can color-map quantities that are not densities: First, if all the individual areas we color have
approximately the same size and shape, then we don’t have to worry about some areas
drawing disproportionate attention solely due to their size. Second, if the individual areas we
color are relatively small compared to the overall size of the map and if the quantity that color
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plains and western states have low population densities, and the state of Alaska is the least
populated of all.

Figure 15.11: Population density in every U.S. county, shown as a choropleth map. Population density is reported
as persons per square kilometer. Data source: 2015 Five-Year American Community Survey

Figure 15.11 uses light colors to represent low population densities and dark colors to
represent high densities, so that high-density metropolitan areas stand out as dark colors on
a background of light colors. We tend to associate darker colors with higher intensities when
the background color of the figure is light. However, we can also pick a color scale where high
values light up on a dark background (Figure 15.12). As longs as the lighter colors fall into the
red-yellow spectrum, so that they appear to be glowing, they can be perceived as
representing higher intensities. As a general principle, when figures are meant to be printed

on white paper then light-colored background areas (as in Figure 15.11) will typically work
better. For online viewing or on a dark background, dark-colored background areas (as in
Figure 15.12) may be preferable.

Figure 15.12: Population density in every U.S. county, shown as a choropleth map. This map is identical to Figure
15.11 except that now the color scale uses light colors for high population densities and dark colors for low
population densities. Data source: 2015 Five-Year American Community Survey

Choropleths work best when the coloring represents a density (i.e., some quantity divided by
surface area, as in Figures 15.11 and 15.12). We perceive larger areas as corresponding to
larger amounts than smaller areas (see also the chapter on proportional ink, Chapter 17), and
shading by density corrects for this effect. However, in practice, we often see choropleths
colored according to some quantity that is not a density. For example, in Figure 4.4 I showed
a choropleth of median annual income in Texas counties. Such choropleth maps can be
appropriate when they are prepared with caution. There are two conditions under which we
can color-map quantities that are not densities: First, if all the individual areas we color have
approximately the same size and shape, then we don’t have to worry about some areas
drawing disproportionate attention solely due to their size. Second, if the individual areas we
color are relatively small compared to the overall size of the map and if the quantity that color

represents changes on a scale larger than the individual colored areas, then again we don’t
have to worry about some areas drawing disproportionate attention solely due to their size.
Both of these conditions are approximately met in Figure 4.4.

It is also important to consider the effect of continuous versus discrete color scales in
choropleth mapping. While continuous color scales tend to look visually appealing (e.g.,
Figures 15.11 and 15.12), they can be difficult to read. We are not very good at recognizing a
specific color value and matching it against a continuous scale. Therefore, it is often
appropriate to bin the data values into discrete groups that are represented with distinct
colors. On the order of four to six bins is a good choice. The binning sacrifices some
information, but on the flip side the binned colors can be uniquely recognized. As an example,
Figure 15.13 expands the map of median income in Texas counties (Figure 4.4) to all counties
in the U.S., and it uses a color scale consisting of five distinct income bins.

Figure 15.13: Median income in every U.S. county, shown as a choropleth map. The median income values have
been binned into five distinct groups, because binned color scales are generally easier to read than continuous
color scales. Data source: 2015 Five-Year American Community Survey
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Even though counties are not quite as equal-sized and even-shaped across the entire U.S. as
they are just within Texas, I think Figure 15.13 still works as a choropleth map. No individidual
county overly dominates the map. However, things look different when we draw a comparable
map at the state level (Figure 15.14). Then Alaska dominates the choropleth and, because of
its size, suggests that median incomes above $70,000 are common. Yet Alaska is very
sparsely populated (see Figures 15.11 and 15.12), and thus the income levels in Alaska apply
only to a small portion of the U.S. population. The vast majority of U.S. counties, which are
nearly all more populous than counties in Alaska, have a median income of below $60,000.

Figure 15.14: Median income in every U.S. state, shown as a choropleth map. This map is visually dominated by
the state of Alaska, which has a high median income but very low population density. At the same time, the
densely populated high-income states on the East Coast do not appear very prominent on this map. In aggregate,
this map provides a poor visualization of the income distribution in the U.S., and therefore I have labeled it as
“bad.” Data source: 2015 Five-Year American Community Survey

15.4  Cartograms
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Visualizing geospatial data without maps

Figure 15.16: Median income in every U.S. state, shown as a cartogram heatmap. Each state is represented by an
equally sized square, and the squares are arranged according to the approximate position of each state relative to
the other states. This representation gives the same visual weight to each state. Data source: 2015 Five-Year
American Community Survey

Finally, we can draw more complex cartograms by placing individual plots at the location of
each state. For example, if we want to visualize the evolution of the unemployment rate over
time for each state, it can help to draw an individual graph for each state and then arrange the
graphs based on the approximate relative position of the states to each other (Figure 15.17).
For somebody who is familiar with the geography of the United States, this arrangement may
make it easier to find the graphs for specific states than arranging them, for example, in
alphabetical order. Furthermore, one would expect neighboring states to display similar
patterns, and Figure 15.17 shows that this is indeed the case.
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Visualizing geospatial data without maps

Figure 15.17: Unemployment rate leading up to and following the 2008 financial crisis, by state. Each panel shows
the unemployment rate for one state, including the District of Columbia (DC), from January 2007 through May
2013. Vertical grid lines mark January of 2008, 2010, and 2012. States that are geographically close tend to show
similar trends in the unemployment rate. Data source: U.S. Bureau of Labor Statistics
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Visualizing the uncertainty of point estimates

Figure 16.9: Mean chocolate flavor ratings for manufacturers from four different countries, relative to the mean
rating of U.S. chocolate bars. Each panel uses a different approach to visualizing the same uncertainty information.
(a) Graded error bars with cap. (b) Graded error bars without cap. (c) Single-interval error bars with cap. (d) Single-
interval error bars without cap. (e) Confidence strips. (f) Confidence distributions.

As an alternative to error bars we could draw confidence strips that gradually fade into
nothing (Figure 16.9e). Confidence strips better convey how probable different values are, but
they are difficult to read. We would have to visually integrate the different shadings of color to
determine where a specific confidence level ends. From Figure 16.9e we might conclude that
the mean rating for Peruvian chocolate bars is significantly lower than that of U.S. chocolate
bars, and yet this is not the case. Similar problems arise when we show explicit confidence
distributions (Figure 16.9f). It is difficult to visually integrate the area under the curve and to
determine where exactly a given confidence level is reached. This issue can be somewhat
alleviated, however, by drawing quantile dotplots as in Figure 16.3.
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The principle of proportional ink
The principle of proportional ink: The sizes of shaded areas in a
visualization need to be proportional to the data values they
represent.

We first consider the most common scenario, visualization of amounts along a linear scale.
Figure 17.1 shows the median income in the five counties that make up the state of Hawaii. It
is a typical figure one might encounter in a newspaper article. A quick glance at the figure
suggests that the county of Hawaii is incredibly poor while the county of Honolulu is much
richer than the other counties. However, Figure 17.1 is quite misleading, because all bars
begin at $50,000 median income. Thus, while the endpoint of each bar correctly represents
the actual median income in each county, the bar height represents the extent to which
median incomes exceed $50,000, an arbitrary number. And human perception is such that the
bar height is the key quantity we perceive when looking at this figure, not the location of the
bar endpoint relative to the y axis.

Figure 17.1: Median income in the five counties of the state of Hawaii. This figure is incorrect, because the y axis
scale starts at $50,000 instead of $0. As a result, the bar heights are not proportional to the values shown, and the
income differential between the county of Hawaii and the other four counties appears much bigger than it actually
is. Data source: 2015 Five-Year American Community Survey.

An appropriate visualization of these data makes for a less exciting story (Figure 17.2). While
there are differences in median income between the counties, they are nowhere near as big as
Figure 17.1 suggested. Overall, the median incomes in the different counties are somewhat
comparable.

Bars on a linear scale must always start at 0.
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scale starts at $50,000 instead of $0. As a result, the bar heights are not proportional to the values shown, and the
income differential between the county of Hawaii and the other four counties appears much bigger than it actually
is. Data source: 2015 Five-Year American Community Survey.

An appropriate visualization of these data makes for a less exciting story (Figure 17.2). While
there are differences in median income between the counties, they are nowhere near as big as
Figure 17.1 suggested. Overall, the median incomes in the different counties are somewhat
comparable.

Figure 17.2: Median income in the five counties of the state of Hawaii. Here, the y axis scale starts at $0 and
therefore the relative magnitudes of the median incomes in the five counties are accurately shown. Data source:
2015 Five-Year American Community Survey.

Bars on a linear scale must always start at 0.

Similar visualization problems frequently arise in the visualization of time series, such as those
of stock prices. Figure 17.3 suggests a massive collapse in the stock price of Facebook
occurred around Nov. 1, 2016. In reality, the price decline was moderate relative to the total
price of the stock (Figure 17.4). The y-axis range in Figure 17.3 would be questionable even
without the shading undearneath the curve. But with the shading, the figure becomes
particularly problematic. The shading emphasizes the distance from the location of the x axis
to the specific y values shown, and thus it creates the visual impression that the height of the
shaded area at a given day represents the stock price of that day. Instead, it only represents
the difference in stock price from the baseline, which is $110 in Figure 17.3.

Bars on a linear scale must always start at 0.
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Common pitfalls of color use

Figure 19.1: Population growth from 2000 to 2010 versus population size in 2000, for all 50 U.S. states and the
Discrict of Columbia. Every state is marked in a different color. Because there are so many states, it is very difficult
to match the colors in the legend to the dots in the scatter plot. Data source: U.S. Census Bureau

As a rule of thumb, qualitative color scales work best when there are three to five different
categories that need to be colored. Once we reach eight to ten different categories or more,
the task of matching colors to categories becomes too burdensome to be useful, even if the
colors remain sufficiently different to be distinguishable in principle. For the dataset of Figure
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Common pitfalls of color use

Figure 19.1: Population growth from 2000 to 2010 versus population size in 2000, for all 50 U.S. states and the
Discrict of Columbia. Every state is marked in a different color. Because there are so many states, it is very difficult
to match the colors in the legend to the dots in the scatter plot. Data source: U.S. Census Bureau

As a rule of thumb, qualitative color scales work best when there are three to five different
categories that need to be colored. Once we reach eight to ten different categories or more,
the task of matching colors to categories becomes too burdensome to be useful, even if the
colors remain sufficiently different to be distinguishable in principle. For the dataset of Figure

19.1, it is probably best to use color only to indicate the geographic region of each state and
to identify individual states by direct labeling, i.e., by placing appropriate text labels adjacent
to the data points (Figure 19.2). Even though we cannot label every individual state without
making the figure too crowded, direct labeling is the right choice for this figure. In general, for
figures such as this one, we don’t need to label every single data point. It is sufficient to label
a representative subset, for example a set of states we specifically want to call out in the text
that will accompany the figure. We always have the option to also provide the underlying data
as a table if we want to make sure the reader has access to it in its entirety.

Figure 19.2: Population growth from 2000 to 2010 versus population size in 2000. In contrast to Figure 19.1, I have
now colored states by region and have directly labeled a subset of states. The majority of states have been left
unlabeled to keep the figure from overcrowding. Data source: U.S. Census Bureau

Use direct labeling instead of colors when you need to distinguish between
more than about eight categorical items.
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Figures without legends

The general strategy we can employ is called direct labeling, whereby we place appropriate
text labels or other visual elements that serve as guideposts to the rest of the figure. We have
previously encountered direct labeling in Chapter 19 (Figure 19.2), as an alternative to
drawing a legend with over 50 distinct colors. To apply the direct labeling concept to the
stock-price figure, we place the name of each company right next to the end of its respective
data line (Figure 20.8).

Figure 20.8: Stock price over time for four major tech companies. The stock price for each company has been
normalized to equal 100 in June 2012. Data source: Yahoo Finance

Whenever possible, design your figures so they don’t need a legend.

We can also apply the direct labeling concept to the iris data from the beginning of this
chapter, specifically Figure 20.3. Because it is a scatter plot of many points that separate into
three different groups, we need to direct label the groups rather than the individual points.
One solution is to draw ellipses that enclose the majority of the points and then label the
ellipses (Figure 20.9).
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We can also apply the direct labeling concept to the iris data from the beginning of this
chapter, specifically Figure 20.3. Because it is a scatter plot of many points that separate into
three different groups, we need to direct label the groups rather than the individual points.
One solution is to draw ellipses that enclose the majority of the points and then label the
ellipses (Figure 20.9).

Figure 20.9: Sepal width versus sepal length for three different iris species. I have removed the background grid
from this figure because otherwise the figure was becoming too busy.

For density plots, we can similarly direct-label the curves rather than providing a color-coded
legend (Figure 20.10). In both Figures 20.9 and 20.10, I have colored the text labels in the
same colors as the data. Colored labels can greatly enhance the direct labeling effect, but
they can also turn out very poorly. If the text labels are printed in a color that is too light, then
the labels become difficult to read. And, because text consists of very thin lines, colored text
often appears to be lighter than an adjacent filled area of the same color. I generally
circumvent these issues by using two different shades of each color, a light one for filled areas
and a dark one for lines, outlines, and text. If you carefully inspect Figure 20.9 or 20.10, you
will see how each data point or shaded area is filled with a light color and has an outline
drawn in a darker color of the same hue. And the text labels are drawn in the same darker
colors.
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will see how each data point or shaded area is filled with a light color and has an outline
drawn in a darker color of the same hue. And the text labels are drawn in the same darker
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Figure 20.10: Density estimates of the sepal lengths of three different iris species. Each density estimate is directly
labeled with the respective species name.

We can also use density plots such as the one in Figure 20.10 as a legend replacement, by
placing the density plots into the margins of a scatter plot (Figure 20.11). This allows us to
direct-label the marginal density plots rather than the central scatter plot and hence results in
a figure that is somewhat less cluttered than Figure 20.9 with directly-labeled ellipses.
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We can also use density plots such as the one in Figure 20.10 as a legend replacement, by
placing the density plots into the margins of a scatter plot (Figure 20.11). This allows us to
direct-label the marginal density plots rather than the central scatter plot and hence results in
a figure that is somewhat less cluttered than Figure 20.9 with directly-labeled ellipses.

Figure 20.11: Sepal width versus sepal length for three different iris species, with marginal density estimates of
each variable for each species.

And finally, whenever we encode a single variable in multiple aesthetics, we don’t normally
want multiple separate legends for the different aesthetics. Instead, there should be only a
single legend-like visual element that conveys all mappings at once. In the case where we
map the same variable onto a position along a major axis and onto color, this implies that the
reference color bar should run along and be integrated into the same axis. Figure 20.12
shows a case where we map temperature to both a position along the x axis and onto color,
and where we therefore have integrated the color legend into the x axis.
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Multi-panel figures

have, on average, a higher average ranking. However, this trend has weakend towards the end of the 20th century,
and a negative relationship can be seen for movies released in the early 2000s. Data Source: Internet Movie
Database (IMDB, http://imdb.com/)

For such large plots to be easily understandable, it is important that each panel uses the
same axis ranges and scalings. The human mind expects this to be the case. When it is not,
there is a good chance that a reader will mis-interpret what the figure shows. For example,
consider Figure 21.3, which presents how the proportion of Bachelor’s degrees in different
degree areas has changed over time. The figure shows the nine degree areas that have
represented, on average, more than 4% of all degrees between 1971 to 2015. The y axis of
panel is scaled such that the curve for each degree field covers the entire y-axis range. As a
consequence, a cursory examination of Figure 21.3 suggests that the nine degree areas are
all equally popular and have all experienced variation in popularity of a similar magnitude.
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Multi-panel figures

Figure 21.3: Trends in Bachelor’s degrees conferred by U.S. institutions of higher learning. Shown are all degree
areas that represent, on average, more than 4% of all degrees. This figure is labeled as “bad” because all panels
use different y-axis ranges. This choice obscures the relative sizes of the different degree areas and it over-
exagerates the changes that have happened in some of the degree areas. Data Source: National Center for
Education Statistics

Placing all panels onto the same y axis reveals, however, that this interpretation is highly
misleading (Figure 21.4). Some degree areas are much more popular than others, and
similarly some areas have grown or shrunk much more than others. For example, education
has declined a lot, whereas visual and performing arts have remained approximately constant
or maybe seen a small increase.

Figure 21.4: Trends in Bachelor’s degrees conferred by U.S. institutions of higher learning. Shown are all degree
areas that represent, on average, more than 4% of all degrees. Data Source: National Center for Education
Statistics
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Titles and captions
Ï Always label your axes!
Ï Captions of figures and tables should be self-explanatory.
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Your axis labels are too small

24  Your axis labels are too small

If you take away only one single lesson from this book, make it this one: Pay attention to your
axis labels, axis tick labels, and other assorted plot annotations. Chances are they are too
small. In my experience, nearly all plot libraries and graphing softwares have poor defaults. If
you use the default values, you’re almost certainly making a poor choice.

For example, consider Figure 24.1. I see figures like this all the time. The axis labels, axis tick
labels, and legend labels are all incredibly small. We can barely see them, and we may have
to zoom into the page to read the annotations in the legend.

Figure 24.1: Percent body fat versus height in professional male Australian athletes. (Each point represents one
athlete.) This figure suffers from the common affliction that the text elements are way too small and are barely
legible. Data source: Telford and Cunningham (1991)

A somewhat better version of this figure is shown as Figure 24.2. I think the fonts are still too
small, and that’s why I have labeled the figure as ugly. However, we are moving in the right
direction. This figure might be passable under some circumstances. My main criticism here is
not so much that the labels aren’t legible as that the figure is not balanced; the text elements
are too small compared to the rest of the figure.

Figure 24.2: Percent body fat versus height in male athletes. This figure is an improvement over Figure 24.1, but
the text elements remain too small and the figure is not balanced. Data source: Telford and Cunningham (1991)

The next figure uses the default settings I’m applying throughout this book. I think it is well
balanced, the text is clearly visible, and it fits with the overall size of the figure.

Figure 24.3: Percent body fat versus height in male athletes. All figure elements are appropriately scaled. Data
source: Telford and Cunningham (1991)

Importantly, we can overdo it and make the labels too big (Figure 24.4). Sometimes we need
big labels, for example if the figure is meant to be reduced in size, but the various elements of
the figure (in particular, label text and plot symbols) need to fit together. In Figure 24.4, the
points used to visualize the data are too small relative to the text. Once we fix this issue, the
figure becomes acceptable again (Figure 24.5).
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Don’t go 3D

Figure 26.6: Power versus displacement for 32 cars, with fuel efficiency represented by dot size. Data source:
Motor Trend, 1974.

You may wonder whether the problem with 3D scatter plots is that the actual data
representation, the dots, do not themselves convey any 3D information. What happens, for
example, if we use 3D bars instead? Figure 26.7 shows a typical dataset that one might
visualize with 3D bars, the mortality rates in 1940 Virginia stratified by age group and by
gender and housing location. We can see that indeed the 3D bars help us interpret the plot. It
is unlikely that one might mistake a bar in the foreground for one in the background or vise
versa. Nevertheless, the problems discussed in the context of Figure 26.2 exist here as well. It
is difficult to judge exactly how tall the individual bars are, and it is also difficult to make direct
comparisons. For example, was the mortality rate of urban females in the 65–69 age group
higher or lower than that of urban males in the 60–64 age group?

Figure 26.7: Mortality rates in Virginia in 1940, visualized as a 3D bar plot. Mortality rates are shown for four groups
of people (urban and rural females and males) and five age categories (50–54, 55–59, 60–64, 65–69, 70–74), and
they are reported in units of deaths per 1000 persons. This figure is labeled as “bad” because the 3D perspective
makes the plot difficult to read. Data source: Molyneaux, Gilliam, and Florant (1947)

In general, it is better to use Trellis plots (Chapter 21) instead of 3D visualizations. The Virginia
mortality dataset requires only four panels when shown as Trellis plot (Figure 26.8). I consider
this figure clear and easy to interpret. It is immediately obvious that mortality rates were

higher among men than among women, and also that urban males seem to have had higher
mortality rates than rural males whereas no such trend is apparent for urban and rural
females.

Figure 26.8: Mortality rates in Virginia in 1940, visualized as a Trellis plot. Mortality rates are shown for four groups
of people (urban and rural females and males) and five age categories (50–54, 55–59, 60–64, 65–69, 70–74), and
they are reported in units of deaths per 1000 persons. Data source: Molyneaux, Gilliam, and Florant (1947)

26.3  Appropriate use of 3D visualizations

Visualizations using 3D position scales can sometimes be appropriate, however. First, the
issues described in the preceding section are of lesser concern if the visualization is
interactive and can be rotated by the viewer, or alternatively, if it is shown in a VR or
augmented reality environment where it can be inspected from multiple angles. Second, even
if the visualization isn’t interactive, showing it slowly rotating, rather than as a static image
from one perspective, will allow the viewer to discern where in 3D space different graphical
elements reside. The human brain is very good at reconstructing a 3D scene from a series of
images taken from different angles, and the slow rotation of the graphic provides exactly
these images.
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