Data Science and Data Visualization

Volodymyr Minin

UCI Department of Statistics
Donald Bren School of Information & Computer Sciences

ISI-BUDS July 11 2023

Plan for today

- ► What is Data Science?
- ► Data science in the real-world
- ▶ Data visualization

Computers and Data

The historical meaning of the term "computer": "one who computes" (i.e., a person)

Since the 1700's, statisticians have been using "computers" to analyze data – so its not a new idea

For example, Karl Pearson, one of the founders of statistics, directed a team of "computers" in his lab in London around the early 1900's

.....but for many years, "computers" could only work on relatively small problems

Statistics and Modern Computing

Post World War II

 Increasing use of computing to solve algorithmic aspects of statistical analyses

▶ 1960's

Development of statistical computing and exploratory data analysis

▶ 1980's

- Computing allowed statisticians to explore more flexible models
- Increase in use of "non-parametric" techniques and simulation methods

► 1990's

 Development of "machine learning" — very flexible predictive modeling techniques developed in computer science

► Today

Data science = computing + statistics + applications

Data storage became cheaper

Data revolution in Biology

A Paradigm shift in data analysis

► Technological drivers

- Sensors (cheap and ubiquitous, e.g., GPS on your phone)
- Data storage (we are all "data owners")
- Computational power
- Data analysis methods (statistics and machine learning)
- Internet and wireless communication (can collect and share data)

Convergence — tremendous demand for data analysis

In business, in sciences, in medicine, in engineering, and more......

► In the past, this demand was met by statistics

- Does not scale up there are not nearly enough statisticians
- Need more tools than just statistics: need databases, algorithms, machine learning,...

What is Data Science?

- ▶ Data science involves the full lifecycle of data: from messy unstructured data to predictions and decisions
- ► Data science is broader than just databases, statistics, ML, algorithms, but these are all critical components
- Key aspects of data science include
 - Domain knowledge and problem definition
 - Data preparation/organization/management
 - Understanding of uncertainty (statistics)
 - Computing, algorithms, fitting models, machine learning
 - Iterative exploration and experimentation
 - Human judgement and interpretation

Components of Data Science

Components of Data Science

Components of Data Science

Data pipeline

How is Data Science used?

How does Amazon forecast how many items for its warehouses?

How does Facebook predict what content to show you?

How do companies decide what ads to show you?

U.S. INTERNATIONAL 中文网 The New Hork Times

Tuesday, March 4, 2014 III Today's Paper Personalize Your Weather III W

OP-ED CONTRIBUTOR

WORLD US NEW YORK RUSINESS OPINION SPORTS SCIENCE ARTS FASHION & STYLE VIDEO

All Sections

TURMOIL IN UKRAINE

Putin, Flashing Disdain. Defends Action in Crimea

By STEVEN LEE MYERS 59 minutes ago

President Vladimir V. Putin's first public remarks on the political upheaval in Ukraine were aimed at both international and domestic audiences. defending Russia from the fury of global criticism and

rallying support at home. NEWS ANALYSIS

No Easy Way Out of Ukraine Crisis

By PETER BAKER 54 minutes ago White House officials are weighing their options, knowing that reversing the occupation of Crimea would be difficult, if not impossible, in the short run.

Ukrainian riot police officers stood guard at an anti-Russian rally in Donetsk on Tuesday.

Crimea's Pro-Russian Leader Says Region Is Secure By DAVID M MERSZENHORN 8-21 PM FT

The prime minister of the autonomous region offered the assurance on Tuesday even as armed standoffs continued.

DELATED COVERAGE Kerry Takes Offer of Aid to Ukraine 33 minutes ago

Cyberattacks Rise as Crisis Spills to Internet 8:47 PM ET WDEO: Confrontation in Crimea

Has Privacy Become a My Character to Kill

The Opinion Pages

Luxury Good? It takes a lot of money and time to avoid backers and data miners.

Editorial: Frustration With Afghanistan Brooks: Putin Can't Stop Cohen: Russia's Crimean

Get Quotes | My Portfolios »

I'm not sure I can say goodbye to a man who has defined my creative life for so long - and who will pay the mortgage for at least one more contract.

B Op-Docs: 'Chinese, on the Inside'

MARKETS » At 10:03 PM ET HangSeng 14.942.78 2.059.39 -12.09 +1.50% -0.58% Data delayed at least 15 minutes

How can we make personalized recommendations in medicine?

How do public health workers predict infectious disease outbreaks?

Influenza Observations and Forecast

Orange County, CA COVID-19 Situation Report, December 28, 2020

Report period: Nov 15 - Dec 20 (we don't use the most recent data due to reporting delays)

The goal of this report is to inform interested parties about dynamics of SARS-CoV-2 spread in Orange County, CA and to predict epidemic trajectories. Methodological details are provided below and in the accompanying manuscript. We are also contributing to COVID Trends by UCI Irvine project that provides data visualizations of California County trends across time and space.

https://www.stat.uci.edu/oc_covid_model/

Questions?

Data visualization: why visualize and explore?

▶ People are good at pattern recognition

 At spotting clusters, trends, outliers, structure, etc. that computers many miss

Usually two types of users

- 1. The data scientist who wants to explore/analyze/understand
 - For the data scientist, visualization and exploration are part of an iterative process
- 2. The person who needs a quick summary to make a decision
 - For the consumer we want to communicate information quickly and clearly
 - ▶ e.g., for a medical doctor, for a policy-maker, for a company executive

► For data scientists...its always a good idea to look at your data

 Helps to understand where the semantics of the data...what the measurements actually mean

What is exploratory data analysis?

- ► EDA is broader than just visualization
- ► EDA = {visualization, clustering, dimension reduction,...}
- ► For small numbers of variables, EDA = visualization
- For large numbers of variables, we need to be cleverer
 - Clustering, dimension reduction, embedding algorithms
 - These are techniques that essentially reduce high-dimensional data to something we can look at
- Pioneered by John Tukey (statistician at Bell Labs, Princeton) in the 1960's
 - "let the data speak"

Recommended reading

Fundamentals of Data Visualization

Claus O. Wilke

https://serialmentor.com/dataviz/

Mapping data onto aesthetics

Types of aesthetics:

Scales map data values onto aesthetics:

Table 2.2: First 12 rows of a dataset listing daily temperature normals for four weather stations. Data source: NOAA.

Month	Day	Location	Station ID	Temperature
Jan	1	Chicago	USW00014819	25.6
Jan	1	San Diego	USW00093107	55.2
Jan	1	Houston	USW00012918	53.9
Jan	1	Death Valley	USC00042319	51.0
Jan	2	Chicago	USW00014819	25.5
Jan	2	San Diego	USW00093107	55.3
Jan	2	Houston	USW00012918	53.8
Jan	2	Death Valley	USC00042319	51.2
Jan	3	Chicago	USW00014819	25.3
Jan	3	San Diego	USW00093107	55.3
Jan	3	Death Valley	USC00042319	51.3
Jan	3	Houston	USW00012918	53.8

Table 2.2: First 12 rows of a dataset listing daily temperature normals for four weather stations. Data source: NOAA.

Month	Day	Location	Station ID	Temperature
Jan	1	Chicago	USW00014819	25.6
Jan	1	San Diego	USW00093107	55.2
Jan	1	Houston	USW00012918	53.9
Jan	1	Death Valley	USC00042319	51.0
Jan	2	Chicago	USW00014819	25.5
Jan	2	San Diego	USW00093107	55.3
Jan	2	Houston	USW00012918	53.8
Jan	2	Death Valley	USC00042319	51.2
Jan	3	Chicago	USW00014819	25.3
Jan	3	San Diego	USW00093107	55.3
Jan	3	Death Valley	USC00042319	51.3
Jan	3	Houston	USW00012918	53.8

Table 2.2: First 12 rows of a dataset listing daily temperature normals for four weather stations. Data source: NOAA.

Month	Day	Location	Station ID	Temperature
Jan	1	Chicago	USW00014819	25.6
Jan	1	San Diego	USW00093107	55.2
Jan	1	Houston	USW00012918	53.9
Jan	1	Death Valley	USC00042319	51.0
Jan	2	Chicago	USW00014819	25.5
Jan	2	San Diego	USW00093107	55.3
Jan	2	Houston	USW00012918	53.8
Jan	2	Death Valley	USC00042319	51.2
Jan	3	Chicago	USW00014819	25.3
Jan	3	San Diego	USW00093107	55.3
Jan	3	Death Valley	USC00042319	51.3
Jan	3	Houston	USW00012918	53.8

Table 2.2: First 12 rows of a dataset listing daily temperature normals for four weather stations. Data source: NOAA.

Month	Day	Location	Station ID	Temperature
Jan	1	Chicago	USW00014819	25.6
Jan	1	San Diego	USW00093107	55.2
Jan	1	Houston	USW00012918	53.9
Jan	1	Death Valley	USC00042319	51.0
Jan	2	Chicago	USW00014819	25.5
Jan	2	San Diego	USW00093107	55.3
Jan	2	Houston	USW00012918	53.8
Jan	2	Death Valley	USC00042319	51.2
Jan	3	Chicago	USW00014819	25.3
Jan	3	San Diego	USW00093107	55.3
Jan	3	Death Valley	USC00042319	51.3
Jan	3	Houston	USW00012918	53.8

Both plots use three scales in total: two position scales and one color scale

Color as a tool to distinguish

Figure 4.2: Population growth in the U.S. from 2000 to 2010. States in the West and South have seen the largest increases, whereas states in the Midwest and Northeast have seen much smaller increases or even, in the case of Michigan, a decrease. Data source: U.S. Cersus Bureau

Grab color scales at http://colorbrewer2.org

Color as a tool to highlight

Figure 4.8: From 2000 to 2010, the two neighboring southern states Texas and Louisiana have experienced among the highest and lowest population growth across the U.S. Data source: U.S. Census Bureau

Grab color scales at http://colorbrewer2.org

Color to represent data values

Figure 4.4: Median annual income in Texas counties. The highest median incomes are seen in major Texas metropolitan areas, in particular near Houston and Dallas. No median income estimate is available for Loving County in West Texas and therefore that county is shown in gray. Data source: 2015 Five-Year American Community Survey

Figure 4.6: Percentage of people identifying as white in Texas counties. Whites are in the majority in North and East Texas but not in South or West Texas. Data source: 2010 Decennial U.S. Census

Sequential color scale

Divergent color scale

Okabe, M., and K. Ito. 2008. "Color Universal Design (CUD): How to Make Figures and Presentations That Are Friendly to Colorblind People." http://jfly.iam.u-tokyo.ac.jp/color/.

Visualizing amounts

Table 6.1: Highest grossing movies for the weekend of December 22-24, 2017. Data source: Box Office Mojo (http://www.boxofficemojo.com/). Used with permission

Rank	Title	Weekend gross
1	Star Wars: The Last Jedi	\$71,565,498
2	Jumanji: Welcome to the Jungle	\$36,169,328
3	Pitch Perfect 3	\$19,928,525
4	The Greatest Showman	\$8,805,843
5	Ferdinand	\$7,316,746

This dataset is not suitable for being visualized with bars. The bars are too long and they draw attention away from the key feature of the data, the differences in life expectancy among the different countries. Data source: Gapminder project

Visualizing distributions — examples

Table 7.1: Numbers of passenger with known age on the Titanic.

Age range	Count	Age range	Count
0–5	36	31–35	76
6–10	19	36-40	74
11–15	18	41–45	54
16–20	99	46-50	50
21-25	139	51–55	26
26-30	121	56-60	22

Count
16
3
3

When making a histogram, always explore multiple bin widths

Visualizing distributions — examples

Table 7.1: Numbers of passenger with known age on the Titanic. Age range Count Age range Count Age range Count 76 36 31 - 3561-65 16 6-10 19 36-40 74 66-70 3 11-15 18 41-45 54 71-75 3 16-20 99 46-50 50 21-25 139 51-55 26 22 26-30 121 56-60 b a 0.04 0.04 qensity 0.02 density 0.02 0.01 0.01 0.00 0.00 20 60 20 60 age (years) age (years) c d 0.04 0.04 0.03 0.02 0.03 density 20:0 0.01 0.01 0.00 0.00 20 60 20 60 age (years) age (years)

Verify that density doesn't predict the existence of nonsensical data

Visualizing multiple distributions

To visualize several distributions at once, kernel density plots will generally work better than histograms.

	Pie chart	Stacked bars	Side-by-side bars
Clearly visualizes the data as proportions of a whole	~	~	×
Allows easy visual comparison of the relative proportions	*	*	~
Visually emphasizes simple fractions, such as 1/2, 1/3, 1/4	~	*	*
Looks visually appealing even for very small datasets	~	*	~
Works well when the whole is broken into many pieces	*	*	~
Works well for the visualization of many sets of proportions or time series of proportions	×	~	×

Figure 10.4: Market share of five hypothetical companies, A-E, for the years 2015-2017, visualized as pie charts. This visualization has two major problems: 1. A comparison of relative market share within years is nearly impossible. 2. Changes in market share across years are difficult to see.

Figure 10.4: Market share of five hypothetical companies, A-E, for the years 2015-2017, visualized as pie charts. This visualization has two major problems: 1. A comparison of relative market share within years is nearly impossible. 2. Changes in market share across years are difficult to see.

Figure 10.4: Market share of five hypothetical companies, A-E, for the years 2015-2017, visualized as pie charts. This visualization has two major problems: 1. A comparison of relative market share within years is nearly impossible. 2. Changes in market share across years are difficult to see.

Figure 10.4: Market share of five hypothetical companies, A.-E. for the years 2015-2017, visualized as pie charts. This visualization has two major problems: 1. A comparison of relative market share within years is nearly impossible. 2. Changes in market share across years are difficult to see.

Humans are not good at computing integrals in their heads, so comparing lengths is much easier than comparing areas.

Visualizing x-y relationships

Visualizing x-y relationships

Visualizing x-y relationships

Scatter matrix plot

Correlograms

Correlograms

Correlograms

Lack of linear correlation does not imply lack of dependence

Dimension reduction

Dimension reduction

Paired data

Scatterplots and slopegraphs are two main choices for plotting paired data.

The last plot shows that slopegraph can accomodate short time series.

Paired data

Scatterplots and slopegraphs are two main choices for plotting paired data.

The last plot shows that slopegraph can accomodate short time series.

Paired data

Scatterplots and slopegraphs are two main choices for plotting paired data.

The last plot shows that slopegraph can accomodate short time series.

For dense time series, connect the dots and omit them.

Visualizing time series — multivariate

Consider replacing legends with direct labeling.

Make sure it is easy to compare objects of interest

Visualizing geospatial data without maps

Visualizing geospatial data without maps

Visualizing the uncertainty of point estimates

The principle of proportional ink

The principle of proportional ink: The sizes of shaded areas in a visualization need to be proportional to the data values they represent.

Bars on a linear scale must always start at 0.

The principle of proportional ink

The principle of proportional ink: The sizes of shaded areas in a visualization need to be proportional to the data values they represent.

Bars on a linear scale must always start at 0.

Common pitfalls of color use

Common pitfalls of color use

Multi-panel figures

Multi-panel figures

Titles and captions

- ► Always label your axes!
- ► Captions of figures and tables should be self-explanatory.

Your axis labels are too small

Don't go 3D

