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Plan for today

» What is Data Science?
» Data science in the real-world

» Data visualization



Computers and Data

The historical meaningofthe term “computer”:
“one who computes” (i.e., a person)

Since the 1700’s, statisticians have been using
“computers” to analyze data—so its nota new idea

For example, Karl Pearson, one of the founders of
statistics, directed a team of “computers” in hislab in
London around the early 1900’s

.....but for many years, “computers” could only work
on relatively small problems




Statistics and Modern Computing
» Post World War Il

— Increasing use of computing to solve algorithmic aspects of statistical
analyses

> 1960’s

— Development of statistical computing and exploratory data analysis

> 1980’s

— Computing allowed statisticians to explore more flexible models
— Increase in use of “non-parametric” techniques and simulation methods

> 1990’s

— Development of “machine learning” — very flexible predictive modeling
techniques developed in computer science

» Today

— Data science = computing + statistics + applications



Data storage became cheaper
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Data revolution in Biology

Cost per Human Genome
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A Paradigm shift in data analysis

» Technological drivers
— Sensors (cheap and ubiquitous, e.g., GPS on your phone)

— Data storage (we are all “data owners”)
— Computational power
— Data analysis methods (statistics and machine learning)

— Internet and wireless communication (can collect and share data)

» Convergence — tremendous demand for data analysis
— In business, in sciences, in medicine, in engineering, and more......

» In the past, this demand was met by statistics
— Does not scale up — there are not nearly enough statisticians

— Need more tools than just statistics: need databases, algorithms, machine
learning,...



What is Data Science?

» Data science involves the full lifecycle of data: from messy
unstructured data to predictions and decisions

» Data science is broader than just databases, statistics, ML,
algorithms, but these are all critical components

» Key aspects of data science include



Components of Data Science
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Components of Data Science

Statistics Computing
(Mathematical and (Algorithms and

Probabilistic Software)
Foundations)

Applications
(Analyzing Real Data)
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How is Data Science used?
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How does Amazon forecast how many items for its
warehouses?

From dailymail.co.uk

f 1 menco
e |
N

N e

Sales Time Series (Store 377)

o
From www.formaspace.com
950~
925
8 == Time Series
2  boost s (RUSES0.138)
oo = xgboost, id (RMSE=0.116)

875~

From linkedin.com

o815 osits aris o7hs osits



How does Facebook predict what content to show
you?

MONTHLY USERS ON FACEBOOK 2004-2017 . .
2000 The Friendship graph

N facebook

500M users each connect to an
average of 130 other users =
~ 60 Billion Edges

2012 2014 2016

Over 30 billion pieces of content shared every

Graphics from Lars Backstrom, ESWC 2011

Over 3 billion photos uploaded each month



How do companies decide what ads to show you?
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How can we make personalized recommendations in

medicine?
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How do public health workers predict infectious

disease outbreaks?

Influenza Observations and Forecast

https://cpid.iri.columbia.edu
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Orange County, CA COVID-19 Situation Report, December 28, 2020

Report period: Nov 15 - Dec 20 (we don’t use the most recent data due to reporting delays)

The goal of this report is to inform interested parties about dynamics of SARS-CoV-2 spread in Orange County, CA and to predict epidemic
trajectories. Methodological details are provided below and in the accompanying manuscript. We are also contributing to COVID Trends by
UC Irvine project that provides data visualizations of California County trends across time and space.
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Questions?



Data visualization: why visualize and explore?

» People are good at pattern recognition

— At spotting clusters, trends, outliers, structure, etc. that computers many
miss

» Usually two types of users
1. The data scientist who wants to explore/analyze/understand

> For the data scientist, visualization and exploration are part of an
iterative process

2. The person who needs a quick summary to make a decision

> For the consumer we want to communicate information quickly and
clearly
> e.g., for a medical doctor, for a policy-maker, for a company executive

» For data scientists...its always a good idea to look at your data

— Helps to understand where the semantics of the data...what the
measurements actually mean



What is exploratory data analysis?

>

>

v
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EDA is broader than just visualization
EDA = {visualization, clustering, dimension reduction,...}

For small numbers of variables, EDA = visualization

For large numbers of variables, we need to be cleverer

Pioneered by John Tukey (statistician at Bell Labs, Princeton) in
the 1960’s
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Recommended reading

Fundamentals of Data Visualization

Claus O. Wilke

https://serialmentor.com/dataviz/

4

bad

b

value

ugly

wrong

A B C

21


https://serialmentor.com/dataviz/

Mapping data onto aesthetics

Types of aesthetics:

position shape size
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Mapping data onto aesthetics — example

Table 2.2: First 12 rows of a dataset listing daily temperature normals for four weather stations. Data source: NOAA.

Month Day Location Station ID Temperature
Jan 1 Chicago USW00014819 25.6
Jan 1 San Diego USW00093107 55.2
Jan 1 Houston UsSwo00012918 53.9
Jan 1 Death Valley USC00042319 51.0
Jan 2 Chicago USw00014819 255
Jan 2 San Diego USW00093107 55.3
Jan 2 Houston USW00012918 53.8
Jan 2 Death Valley UsC00042319 51.2
Jan 3 Chicago USW00014819 25.3
Jan 3 San Diego USW00093107 55.3
Jan 3 Death Valley UsC00042319 51.3
Jan 3 Houston USW00012918 53.8

23



Mapping data onto aesthetics — example

temperature (°F)

00

Table 2.2: First 12 rows of a dataset listing daily temperature normals for four weather stations. Data source: NOAA.

Month Day Location Station ID Temperature
Jan 1 Chicago USW00014819 25.6
Jan 1 San Diego USW00093107 55.2
Jan 1 Houston UsSwo00012918 53.9
Jan 1 Death Valley USC00042319 51.0
Jan 2 Chicago USw00014819 255
Jan 2 San Diego USW00093107 55.3
Jan 2 Houston USW00012918 53.8
Jan 2 Death Valley UsC00042319 51.2
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Mapping data onto aesthetics — example

Table 2.2: First 12 rows of a dataset listing daily temperature normals for four weather stations. Data source: NOAA.

Month Day Location Station ID Temperature
Jan 1 Chicago USW00014819 25.6
Jan 1 San Diego USW00093107 55.2
Jan 1 Houston UsSwo00012918 53.9
Jan 1 Death Valley USC00042319 51.0
Jan 2 Chicago USw00014819 255
Jan 2 San Diego USW00093107 55.3
Jan 2 Houston USW00012918 53.8
Jan 2 Death Valley UsC00042319 51.2
Jan 3 Chicago USW00014819 25.3
Jan 3 San Diego USW00093107 55.3
Jan 3 Death Valley UsC00042319 51.3
Jan 3 Houston USW00012918 53.8
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Mapping data onto aesthetics — example

Table 2.2: First 12 rows of a dataset listing daily temperature normals for four weather stations. Data source: NOAA.

Month Day Location Station ID Temperature
Jan 1 Chicago USW00014819 25.6
Jan 1 San Diego USW00093107 55.2
Jan 1 Houston USW00012918 53.9
Jan 1 Death Valley USC00042319 51.0
Jan 2 Chicago USw00014819 25.5
Jan 2 San Diego USWO00093107 55.3
Jan 2 Houston USwo00012918 53.8
Jan 2 Death Valley USC00042319 51.2
Jan 3 Chicago USW00014819 25.3
Jan 3 San Diego USW00093107 55.3
Jan 3 Death Valley USC00042319 51.3
Jan 3 Houston USW00012918 53.8
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Color as a tool to distinguish

Grab color scales at
http://
colorbrewer2.org
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Figure 4.2: Population growth in the U.S. from 2000 to 2010. States in the West and South have seen the largest
increases, whereas states in the Midwest and Northeast have seen much smaller increases or even, in the case of
Michigan, a decrease. Data source: U.S. Census Bureau
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Color as a tool to highlight
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Figure 4.8: From 2000 to 2010, the two neighboring southern states Texas and Louisiana have experienced among
the highest and lowest population growth across the U.S. Data source: U.S. Census Bureau
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Color to represent data values
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Figure 4.4: Median annual income in Texas counties. The highest median incomes are seen in major Texas Figure 4.6: Percentage of people identifying as white in Texas counties. Whites are in the majority in North and
metropolitan areas, in particular near Houston and Dallas. No median income estimate is avallable for Loving
County in West Texas and therefore that county is shown in gray. Data source: 2015 Five-Year American

East Texas but not in South or West Texas. Data source: 2010 Decennial U.S. Census.

Community Survey

Sequential color scale Divergent color scale

Okabe, M., and K. Ito. 2008. “Color Universal Design (CUD): How to
Make Figures and Presentations That Are Friendly to Colorblind
People” http://jfly.iam.u-tokyo.ac.jp/color/.
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Visualizing amounts

bars bars
grouped bars grouped bars stacked bars
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heatmap

dots

stacked bars
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Visualizing amounts — example 1
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Table 6.1: Highest grossing movies for the weekend of December 22-24, 2017. Data source: Box Office Mojo

p:

jo.com/). Used with

Rank Title ‘Weekend gross
1 Star Wars: The Last Jedi $71,565,498
2 Jumaniji: Welcome to the Jungle $36,169,328
3 Pitch Perfect 3 $19,928,525
4 The Greatest Showman $8,805,843
5 Ferdinand $7,316,746
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Visualizing amounts — example 2
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Visualizing amounts — example 2
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Visualizing amounts — example 3
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This dataset is not suitable for being visualized with bars. The bars
are too long and they draw attention away from the key feature of the
data, the differences in life expectancy among the different countries.

Data source: Gapminder project
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Visualizing distributions
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Visualizing distributions — examples

Table 7.1: Numbers of passenger with known age on the Titanic.

Age range Count Age range Count Age range Count
0-5 36 31-35 76 61-65 16
6-10 19 36-40 74 66-70 3
1-15 18 41-45 54 71-75 3
16-20 99 46-50 50
21-25 139 51-55 26
26-30 121 56-60 22
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When making a histogram, always explore multiple bin widths



Visualizing distributions — examples

Table 7.1: Numbers of passenger with known age on the Titanic.

Age range Count Age range Count Age range Count
0-5 36 31-35 76 61-65 16
6-10 19 36-40 74 66-70 3
11-15 18 41-45 54 7175 3
16-20 99 46-50 50
21-25 139 51-55 26
26-30 121 56-60 22
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Verify that density doesn’t predict the existence of nonsensical data 32



Visualizing multiple distributions
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Visualizing many distributions
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Visualizing many distributions

34



Visualizing many distributions
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Visualizing many distributions
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Visualizing many distributions
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Visualizing proportions
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Visualizing proportions
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Visualizing proportions
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Visualizing proportions
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Table 10.1: Pros and cons of common approaches to visuaizing proportons: pie chrts, stacked bars, and sde-by-side bars.
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Clearly visualizes the data as
v v *
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Allows easy visual comparison of
* x v
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When side-by-side bars win

2015 2016 2017 bad

< c

Figure 10.4: Market share of five hypothetical companies, A-E, for the years 2015-2017, visualized as pie charts.
‘This visualization has two major problems: 1. A comparison of relative market share within years is nearly
impossible. 2. Changes in market share across years are difficult to see.
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When side-by-side bars win
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Figure 10.4: Market share of five hypothetical companies, A-E, for the years 2015-2017, visualized as pie charts.
‘This visualization has two major problems: 1. A comparison of relative market share within years is nearly
impossible. 2. Changes in market share across years are difficult to see.
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When side-by-side bars win
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Figure 10.4: Market share of five hypothetical companies, A-E, for the years 2015-2017, visualized as pie charts.
“This visualization has two major problems: 1. A comparison of relative market share within years is nearly
impossible. 2. Changes in market share across years are difficut to see. 0%
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When side-by-side bars win
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Figure 10.4: Market share of five hypothetical companies, A-E, for the years 2015-2017, visualized as pie charts.
‘This visualization has two major problems: 1. A comparison of relative market share within years is nearly
impossible. 2. Changes in market share across years are difficult to see.
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Humans are not good at
computing integrals in their heads,
so comparing lengths is much
easier than comparing areas.
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Visualizing x-y relationships
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Visualizing x-y relationships
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Visualizing x-y relationships
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Scatter matrix plot
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Correlograms
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Correlograms
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Correlograms

Lack of linear correlation does not imply lack of dependence
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Dimension reduction
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Dimension reduction
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Paired data

Scatterplots and slopegraphs are two main choices for plotting paired
data.
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The last plot shows that slopegraph can accomodate short time
series.
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Visualizing time series — univariate

1600

1200

preprints / month
©
8

IS
8
3

42



Visualizing time series — univariate
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Visualizing time series — univariate
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Visualizing time series — univariate
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Visualizing time series — multivariate

600 bad
500 * bioRxiv

= arXiv g-bio .
400 « Peer) Preprints

preprints / month
8
8

100




Visualizing time series — multivariate
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Visualizing time series — multivariate
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Visualizing time series — multivariate
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Visualizing geospatial data
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Visualizing geospatial data
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Visualizing geospatial data
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Visualizing geospatial data
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Visualizing geospatial data without maps
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Visualizing geospatial data without maps
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Visualizing the uncertainty of point estimates
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The principle of proportional ink

The principle of proportional ink: The sizes of shaded areas in a
visualization need to be proportional to the data values they
represent.

median income (USD)

Honolulu i Kalawao
county

Bars on a linear scale must always start at 0.
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The principle of proportional ink

The principle of proportional ink: The sizes of shaded areas in a
visualization need to be proportional to the data values they
represent.
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Common pitfalls of color use
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Common pitfalls of color use
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Figures without legends
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Figures without legends
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Figures without legends
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Multi-panel figures
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Titles and captions

» Always label your axes!
» Captions of figures and tables should be self-explanatory.
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Your axis labels
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