Data Science and Data Visualization

Volodymyr Minin

UCI Department of Statistics
Donald Bren School of Information \& Computer Sciences
ISI-BUDS
July 112023

Plan for today

- What is Data Science?
- Data science in the real-world
- Data visualization

Computers and Data

The historical meaning of the term "computer":
"one who computes" (i.e., a person)

Since the 1700's, statisticians have been using "computers" to analyze data - so its not a new idea

For example, Karl Pearson, one of the founders of statistics, directed a team of "computers" in his lab in London around the early 1900’s
.....but for many years, "computers" could only work on relatively small problems

Statistics and Modern Computing

- Post World War II
- Increasing use of computing to solve algorithmic aspects of statistical analyses
- 1960's
- Development of statistical computing and exploratory data analysis
- 1980's
- Computing allowed statisticians to explore more flexible models
- Increase in use of "non-parametric" techniques and simulation methods
- 1990's
- Development of "machine learning" - very flexible predictive modeling techniques developed in computer science
- Today
- Data science $=$ computing + statistics + applications

Data storage became cheaper

Data revolution in Biology

Cost per Human Genome

A Paradigm shift in data analysis

- Technological drivers
- Sensors (cheap and ubiquitous, e.g., GPS on your phone)
- Data storage (we are all "data owners")
- Computational power
- Data analysis methods (statistics and machine learning)
- Internet and wireless communication (can collect and share data)
- Convergence - tremendous demand for data analysis
- In business, in sciences, in medicine, in engineering, and more......
- In the past, this demand was met by statistics
- Does not scale up - there are not nearly enough statisticians
- Need more tools than just statistics: need databases, algorithms, machine learning,...

What is Data Science?

- Data science involves the full lifecycle of data: from messy unstructured data to predictions and decisions
- Data science is broader than just databases, statistics, ML, algorithms, but these are all critical components
- Key aspects of data science include
- Domain knowledge and problem definition
- Data preparation/organization/management
- Understanding of uncertainty (statistics)
- Computing, algorithms, fitting models, machine learning
- Iterative exploration and experimentation
- Human judgement and interpretation

Components of Data Science

Components of Data Science

Components of Data Science

Data pipeline

How is Data Science used?

Organizations
Data Science Applications

How does Amazon forecast how many items for its warehouses?

How does Facebook predict what content to show you?

How do companies decide what ads to show you?

How can we make personalized recommendations in medicine?

How do public health workers predict infectious disease outbreaks?
 Influenza Observations and Forecast

https://cpid.iri.columbia.edu

Orange County, CA COVID-19 Situation Report, December 28, 2020

Report period: Nov 15 - Dec 20 (we don't use the most recent data due to reporting delays)
The goal of this report is to inform interested parties about dynamics of SARS-CoV-2 spread in Orange County, CA and to predict epidemic trajectories. Methodological details are provided below and in the accompanying manuscript. We are also contributing to COVID Trends by UC Irvine project that provides data visualizations of California County trends across time and space.

Latent \& observed trajectories, posterior median \& $50 \%, 80 \%, 95 \%$ credible intervals

https://www.stat.uci.edu/oc_covid_model/

Questions?

Data visualization: why visualize and explore?

- People are good at pattern recognition
- At spotting clusters, trends, outliers, structure, etc. that computers many miss
- Usually two types of users

1. The data scientist who wants to explore/analyze/understand

- For the data scientist, visualization and exploration are part of an iterative process

2. The person who needs a quick summary to make a decision

- For the consumer we want to communicate information quickly and clearly
> e.g., for a medical doctor, for a policy-maker, for a company executive
- For data scientists...its always a good idea to look at your data
- Helps to understand where the semantics of the data...what the measurements actually mean

What is exploratory data analysis?

- EDA is broader than just visualization
- EDA $=\{$ visualization, clustering, dimension reduction,...\}
- For small numbers of variables, EDA = visualization
- For large numbers of variables, we need to be cleverer
- Clustering, dimension reduction, embedding algorithms
- These are techniques that essentially reduce high-dimensional data to something we can look at
- Pioneered by John Tukey (statistician at Bell Labs, Princeton) in the 1960's
- "let the data speak"

Recommended reading

Fundamentals of Data Visualization
Claus O. Wilke
https://serialmentor.com/dataviz/

Mapping data onto aesthetics

Types of aesthetics:

Scales map data values onto aesthetics:

Mapping data onto aesthetics - example

Table 2.2: First 12 rows of a dataset listing daily temperature normals for four weather stations. Data source: NOAA.				
Month	Day	Location	Station ID	Temperature
Jan	1	Chicago	USW00014819	25.6
Jan	1	San Diego	USW00093107	55.2
Jan	1	Houston	USW00012918	53.9
Jan	1	Death Valley	USC00042319	51.0
Jan	2	Chicago	USW00014819	25.5
Jan	2	San Diego	USW00093107	55.3
Jan	2	Houston	USW00012918	53.8
Jan	2	Death Valley	USC00042319	51.2
Jan	3	Chicago	USW00014819	25.3
Jan	3	San Diego	USW00093107	55.3
Jan	3	Death Valley	USC00042319	51.3
Jan	3	Houston	USW00012918	53.8

Mapping data onto aesthetics - example

Table 2.2: First 12 rows of a dataset listing daily temperature normals for four weather stations. Data source: NOAA.

Month	Day	Location	Station ID	Temperature
Jan	1	Chicago	USW00014819	25.6
Jan	1	San Diego	USW00093107	55.2
Jan	1	Houston	USW00012918	53.9
Jan	1	Death Valley	USC00042319	51.0
Jan	2	Chicago	USW00014819	25.5
Jan	2	San Diego	USW00093107	55.3
Jan	2	Houston	USW00012918	53.8
Jan	2	Death Valley	USC00042319	51.2
Jan	3	Chicago	USW00014819	25.3
Jan	3	San Diego	USW00093107	55.3
Jan	3	Death Valley	USC00042319	51.3
Jan	3	Houston	USW00012918	53.8

Mapping data onto aesthetics - example

Table 2.2: First 12 rows of a dataset listing daily temperature normals for four weather stations. Data source: NOAA.

Month	Day	Location	Station ID	Temperature
Jan	1	Chicago	USW00014819	25.6
Jan	1	San Diego	USW00093107	55.2
Jan	1	Houston	USW00012918	53.9
Jan	1	Death Valley	USC00042319	51.0
Jan	2	Chicago	USW00014819	25.5
Jan	2	San Diego	USW00093107	55.3
Jan	2	Houston	USW00012918	53.8
Jan	2	Death Valley	USC00042319	51.2
Jan	3	Chicago	USW00014819 Diego	USW00093107

temperature (${ }^{\circ} \mathrm{F}$)

Mapping data onto aesthetics - example

Table 2.2: First 12 rows of a dataset listing daily temperature normals for four weather stations. Data source: NOAA.

Month	Day	Location	Station ID	Temperature
Jan	1	Chicago	USW00014819	25.6
Jan	1	San Diego	USW00093107	55.2
Jan	1	Houston	USW00012918	53.9
Jan	1	Death Valley	USC00042319	51.0
Jan	2	Chicago	USW00014819	25.5
Jan	2	San Diego	USW00093107	55.3
Jan	2	Houston	USW00012918	53.8
Jan	2	Death Valley	USC00042319	51.2
Jan	3	Chicago	USW00014819	25.3
Jan	3	San Diego	USW00093107	55.3
Jan	3	Death Valley	USC00042319	51.3
Jan	3	Houston	USW00012918	53.8

Both plots use three scales in total: two
position scales and one color scale

Color as a tool to distinguish

Figure 4.2: Population growth in the U.S. from 2000 to 2010. States in the West and South have seen the largest increases, whereas states in the Midwest and Northeast have seen much smaller increases or even, in the case of Michigan, a decrease. Data source: U.S. Census Bureau

Color as a tool to highlight

Grab color scales at
http://
colorbrewer2.org

Figure 4.8: From 2000 to 2010, the two neighboring southern states Texas and Louisiana have experienced among the highest and lowest population growth across the U.S. Data source: U.S. Census Bureau

Color to represent data values

Figure 4.4: Median annual income in Texas counties. The highest median incomes are seen in major Texas metropolitan areas, in particular near Houston and Dallas. No median income estimate is available for Loving County in West Texas and therefore that county is shown in gray. Data source: 2015 Five-Year American Community Survey

Sequential color scale

Figure 4.6: Percentage of people identifying as white in Texas counties. Whites are in the majority in North and East Texas but not in South or West Texas. Data source: 2010 Decennial U.S. Census

Divergent color scale

Okabe, M., and K. Ito. 2008. "Color Universal Design (CUD): How to Make Figures and Presentations That Are Friendly to Colorblind People." http://jfly.iam.u-tokyo.ac.jp/color/.

Visualizing amounts

heatmap

Visualizing amounts - example 1

Table 6.1: Highest grossing movies for the weekend of December 22-24, 2017. Data source: Box Office Mojo (http://www.boxofficemojo.com/). Used with permission

Rank	Title	Weekend gross
1	Star Wars: The Last Jedi	$\$ 71,565,498$
2	Jumanji: Welcome to the Jungle	$\$ 36,169,328$
3	Pitch Perfect 3	$\$ 19,928,525$
4	The Greatest Showman	$\$ 8,805,843$
5	Ferdinand	$\$ 7,316,746$

Visualizing amounts — example 2

Visualizing amounts — example 2

Visualizing amounts — example 3

This dataset is not suitable for being visualized with bars. The bars are too long and they draw attention away from the key feature of the data, the differences in life expectancy among the different countries. Data source: Gapminder project

Visualizing distributions

Visualizing distributions - examples

Table 7.1: Numbers of passenger with known age on the Titanic.

Age range	Count
$0-5$	36
$6-10$	19
$11-15$	18
$16-20$	99
$21-25$	139
$26-30$	121

Age range	Count
$31-35$	76
$36-40$	74
$41-45$	54
$46-50$	50
$51-55$	26
$56-60$	22

Age range	Count
$61-65$	16
$66-70$	3
$71-75$	3

When making a histogram, always explore multiple bin widths

Visualizing distributions - examples

Table 7.1: Numbers of passenger with known age on the Titanic.

Age range	Count
$0-5$	36
$6-10$	19
$11-15$	18
$16-20$	99
$21-25$	139
$26-30$	121

Age range	Count
$31-35$	76
$36-40$	74
$41-45$	54
$46-50$	50
$51-55$	26
$56-60$	22

Age range	Count
$61-65$	16
$66-70$	3
$71-75$	3

Verify that density doesn't predict the existence of nonsensical data

Visualizing multiple distributions

To visualize several
distributions at once, kernel
density plots will generally
work better than
histograms.

Visualizing many distributions

Visualizing many distributions

Visualizing many distributions

Visualizing many distributions

Visualizing many distributions

Visualizing proportions

Visualizing proportions

Visualizing proportions

Visualizing proportions

Table 10.1: Pros and cons of common approaches to visualizing proportions: pie charts, stacked bars, and side-by-side bars.

 Pie chart | Clearly visualizes the data as |
| :--- |
| proportions of a whole |
| Allows easy visual comparison of
 the relative proportions |
| Visually emphasizes simple
 fractions, such as $1 / 2,1 / 3,1 / 4$
 Looks visually appealing even for
 very small datasets |
| Works well when the whole is
 broken into many pieces |
| Works well for the visualization of
 many sets of proportions or time
 series of proportions |

When side-by-side bars win

Figure 10.4: Market share of five hypothetical companies, A-E, for the years 2015-2017, visualized as pie charts.
This visualization has two major problems: 1. A comparison of relative market share within years is nearly impossible. 2. Changes in market share across years are difficult to see.

When side-by-side bars win

Figure 10.4: Market share of five hypothetical companies, A-E, for the years 2015-2017, visualized as pie charts. This visualization has two major problems: 1. A comparison of relative market share within years is nearly impossible. 2. Changes in market share across years are difficult to see.

When side-by-side bars win

Figure 10.4: Market share of five hypothetical companies, A-E, for the years 2015-2017, visualized as pie charts. This visualization has two major problems: 1. A comparison of relative market share within years is nearly impossible. 2. Changes in market share across years are difficult to see.

When side-by-side bars win

Figure 10.4: Market share of five hypothetical companies, A-E, for the years 2015-2017, visualized as pie charts. This visualization has two major problems: 1. A comparison of relative market share within years is nearly impossible. 2. Changes in market share across years are difficult to see.

Humans are not good at computing integrals in their heads, so comparing lengths is much easier than comparing areas.

Visualizing x-y relationships

Visualizing x-y relationships

- female birds male birds

Visualizing x-y relationships

Scatter matrix plot

- female birds - male birds

Correlograms

Correlograms

Correlograms

Non-Linear Dependence

Lack of linear correlation does not imply lack of dependence

Dimension reduction

Dimension reduction

Paired data

Scatterplots and slopegraphs are two main choices for plotting paired data.

The last plot shows that slopegraph can accomodate short time series.

Paired data

Scatterplots and slopegraphs are two main choices for plotting paired data.

The last plot shows that slopegraph can accomodate short time series.

Paired data

Scatterplots and slopegraphs are two main choices for plotting paired data.

The last plot shows that slopegraph can accomodate short time series.

Visualizing time series - univariate

Visualizing time series - univariate

Visualizing time series - univariate

Visualizing time series - univariate

For dense time series, connect the dots and omit them.

Visualizing time series - multivariate

Visualizing time series - multivariate

Visualizing time series - multivariate

Visualizing time series - multivariate

Consider replacing legends with direct labeling.

Make sure it is easy to compare objects of interest

Visualizing geospatial data

Visualizing geospatial data

Visualizing geospatial data

Visualizing geospatial data

Visualizing geospatial data without maps

Visualizing geospatial data without maps

Visualizing the uncertainty of point estimates

The principle of proportional ink

The principle of proportional ink: The sizes of shaded areas in a visualization need to be proportional to the data values they represent.

Bars on a linear scale must always start at 0 .

The principle of proportional ink

The principle of proportional ink: The sizes of shaded areas in a visualization need to be proportional to the data values they represent.

Bars on a linear scale must always start at 0 .

Common pitfalls of color use

Common pitfalls of color use

Figures without legends

Figures without legends

Figures without legends

Figures without legends

Multi-panel figures

Multi-panel figures

Titles and captions

- Always label your axes!
- Captions of figures and tables should be self-explanatory.

Your axis labels are too small

Don’t go 3D

