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Learning Objectives

Review of LM
» Review of LM Logistic
Regression
GLM
> GLM Poisson
> Logistic Regression Regression
> Poisson Regression The Assumption

of Independence

» Multinomial Regression

» The assumption of independent observations
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A Linear Model (LM)

Learning
Objectives
» Suppose
Logistic
Y:B0+X1XB1+'°'+prﬁp+e7 Regression
GLM
Where Poisson
. Regression
> the regressand Y is the response / outcome / A
) The Assumption
dependent / endogenous variable of Independence
> the regressors (xi,--- ,xp) are the p covariates /

independent / explanatory variables
» the random term e has a zero mean and variance ¢ > 0
P the intercept is [y, the other p coefficients are

Bla"' 7ﬂp



A Linear Model (LM)

Learning

» Consider the ith observation: Objectives

Yi=Bo+xi XPr1+... +Xip X Bp+e€,i=1,...,n Logistic

Regression
. . GLM
» Basic assumptions o
> E(e;) = 0, which is equivalent to Regression
E(%‘X,) = 60 + Xj1 X “61 + ...+ Xip X BP The Assumption
> Var(e;) = 0. Note, this is equivalent to say of fndependence
Var(Y;|X;) = o2.
» (e1,---,€,) are mutually independent
> If (e1,--- ,€,) areii.d. N(0,02), we can derive t-tests
and F-tests

» Question: what if the assumptions are violated?
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A Motivating Example of GLM

» A motivating example: Consider a binary response
variable, i.e., Y; takes values of 0 or 1.

» Is LM a good choice for this problem?
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A Motivating Example of GLM (continued)

» Consider the Alzheimer data
» We create a binary variable

alzheimer=read.csv("alzheimer_data.csv", header = TRUE)
#dim(alzheimer)

#names (alzheimer)

attach(alzheimer)

#length (unique(id))

alzh=(diagnosis>0)*1 #"*1" to create a 0-1 wvariable
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A Motivating Example of GLM (continued)

alzh.lm = lm(alzh ~ age + female + educ+lhippo + rhippo)

par(mar = c(4, 4, 0.5, 0.5)) Lea.rnirIg
plot(alzh, predict(alzh.lm)); abline(h=c(0,1), col=2) Objectives
Review of LM
[ O
— GLM
c o
N ‘_i ] Poisson
- Regression
S _ }
) The Assumption
9 of Independence
T <9 _]
o o
o

I I I I I I
00 0.2 04 06 08 1.0

alzh



A Motivating Example of GLM (continued)

» Is alzh.Im a good model for alzh?

» Several assumptions of the LM have been violated, and

» The predicted values using LM are not between 0 and 1!

> Let X; = (xj1,- - ,x;p)T, i.e., the vector of covariates
for the ith subject.

» Let m; = E(Y;|X;), the expected probability. We would
like to make sure that 7; € [0, 1]

> How?
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Logistic Regression

Learning
Objectives
. . . Review of LM
» Consider the a special transformation of ;:
. T
logit(m;) = log € (—00,00) GLM
1—m; :
Poisson
Regression
» This is the so-called “logit” link! The Assumption
> 7 = E[Y;|X;]: probability of having AD for a subject of Independence
with covariates X;.
i .
> R odds
m; P(Yi=1]Xi).

> logit(m;) = log == = /ogm. log-odds!



Logistic Regression

Learning
i i ; Objectiv
» We connect 7; and a linear function of the covariates X; e
i Review of LM
by assuming
T
/Ogl :BO+Xi1X61+--.+XipXBp GLM
—

Poisson
Regression

» Essentially, we model the log-odds. I
» But Y; is a random variable. We need a distribution. A offIndependence
natural choice is the Bernoulli distribution

Yi|X; ~ Bernoulli(;)

» pmf, mean, variance:



Logistic Regression

Learning
Objectives
. . . . R L. Review of LM
» Estimation of is typically conducted by maximizing the
corresponding likelihood function
» How to obtain the likelihood function GLN
_ _ eXp{BO+X,'1 XB1+. .. +xpp X3 } Poisson
> E(\/I|Xl) =T = 1+exp{50+x,~1><ﬁ1+. . +§(ip><po} Regression
> f(\/,|X,) = 7T’.Y"(1 — 7T,')17Y", i.e., The Assumption

of Independence
> F(YiX)=mif V=1
> f(YiX)=1—mif V=0
> independence: f(Y|X) =[]/, f(Yi|X)
> L(ﬂ0751a e 7ﬁp) = f(Y|X)



Logistic Regression for Retrospective

Studies

» In the previous slide we model E(Y;|X;). Because Y; is
binary, we have E(Y;|X;) = Pr(Y; =1|X;).

» Retrospective studies are often considered because a
prospective study might take many years and is costly.

P In a retrospective study, subjects are recruited based on
their disease status. Let z =1 denote being sampled
and z = 0 otherwise. Let

Pr(z=1]y =0) = po
Priz=1y =1)=p

» For a retrospective study, the logistic regression models
Pr(y =1jz=1,x)
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Logistic Regression for Retrospective

Studies

» Does this affect the interpretation of the parameters?

» Let 6 = Pr(y =1|x) and ¢ = Pr(y = 1|z =1,x). By
Bayes' theorem and assuming that z does not
dependent on x,

¢=Prly =1z =1,%)
B Pr(z =1y = 1,x)Pr(y = 1|x)
B Pr(z =1y = 1,x)Pr(y = 1|x) + Pr(z = 1]y = 0, x)Pr(y = 0|x)

B p16
P10 + po(1 — 0)
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Logistic Regression for Retrospective

Studies

» Therefore

/og(lf(ﬁ) B Iog(po([l)lﬁﬂ)) N /og(pl/p0)+10g(1;f9)

P> The result suggests that, when using logistic regression,

» the only difference between a prospective study and a
retrospective study would be the intercept.

» the inference for the other parameters is still valid even
though the subjects were recruited based on their
disease status (such as a retrospective case-control
study)

Learning
Objectives

Review of LM

GLM

Poisson
Regression

The Assumption
of Independence



Logistic Regression

Learning
Objectives
Review of LM
» How to obtain the maximum likelihood estimates ]
(MLE) of the parameters (5o, -, 5p)? Taftemr
. . Regression
> lteratively re-weighted least squares (IRLS): the default
The Assumption
method used by R of Independence

» The Newton-Raphson algorithm



The Motivating Example of Logistic

Regression

alzh.glm = glm(alzh ~ age + female + educ+lhippo, family=binomial)
par(mar = c(4, 4, 0.5, 0.5))
plot(alzh, predict(alzh.glm, type='"response")); abline(h=c(0,1), col=2)

"response

00 02 04 06 08 1.0

predict(alzh.gim, type

0.0 0.2 0.4 0.6 0.8

alzh

#More visualizaitons

1.0

#https://blogs.uoregon. edu/rclub/2016/04/05/plotting-your-logistic-regression-models/
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Interpreting a logistic regression

Learning
Objectives
Review of LM
summary (alzh.glm)$coefficients[-1,]
GLM
Poisson
## Estimate Std. Error z value Pr(>lzl) Regression
## age 0.01813761 0.004246088  4.271605 1.940715e-05
## female -1.32020475 0.096534651 -13.675968 1.413151e-42 The Assumption
## educ -0.05640342 0.013279326 -4.247461 2.162067e-05 of Independence

## lhippo -1.98502114 0.114028821 -17.408065 7.166544e-68



Interpreting a logistic regression

Learning
Objectives
» Consider the age variable. The estimated coefficient is Re;ew of LM
0.018138. What information does it provide?
» The estimated log-odds AD for subject i is (or add a o
constant determined by study design, see the slides o
about retrospective studies) Regression

The Assumption
of Independence

logit(#7) = Po+Bageagei+Datemalej+Pseduci+falhippo;
» Let 7; denote estimated log-odds after one year

logit(7;) = Bo+ﬁage(age,-+1)+52 femalei+Bseduci+ B4 lhippo;



Interpreting a logistic regression

» The estimated change in log-odds

logit(#,)logit (A7) = log "~ ~log "
1

- =0.018138

]

A

» Take exponential of both sides, we have

Bl

i
1—7;
iy}
1—7;

= exp(0.018138)

» The odds of AD in one year later is
exp(0.018138) =1.018303 times of the current odds.
» The estimated increase in odds of AD in a year is
0018138 _ 1 — 1.8303%
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Interpreting a logistic regression

Learning
Objectives
Review of LM
» A 95% confidence interval .
> First, obtain a 95% C.I. for the difference in log-odds: .
(0.018138—1.96x0.004246,0.018138+1.96x0.004246) = Regression
(0.00982,0.0265) The Assumption

of Independence

» Then, we transform them to increase in odds:
(eo'00982 —1,0:0205 _ 1) = (0.99%, 2.69%)



Interpreting a logistic regression

» What if we are interested in the increase in odds of AD
in ten years (everything else is fixed)?
» The estimated increase in odds of AD in 10 years is

610*0.018138 _ 1 — 1989%

» A 95% C.I. for 10-year increase in odds:

exp(10%c(0.018138-1.96%0.004246, 0.018138+1.96%0.004246))-1

## [1] 0.1031375 0.3029118

i.e., (10.3%,30.3%)
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Interpreting a logistic regression
Learning

> Very often, we also want to know the significance of a Objectives
variable after adjusting for other important covariates? Review of LM

» Does age show a significant effect after adjusting for
gender, education, and hippocampus volume?

> A test for Hy : Bage = 0 using the Wald test (a type of .
large-sample test) Regression

The Assumption
summary (alzh.glm)$coefficients["age",] of Independence

GLM

## Estimate Std. Error z value Pr(>lzl)
## 1.813761e-02 4.246088e-03 4.271605e+00 1.940715e-05

» Other tests, such as likelihood ratio test, can also be
used



GLM
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GLM

P Recall that we used the logit link in the logistic
regression

i

() = logit(m) = 1.
where T = E(Y,|X,)

» How about LM? g(ui) = pi, where pj = E(Yi|X;). LM
uses the identity link

» Poisson g(\;) = log(\;), where \; = E(Y;|X;), and
Yi|Xi ~ Poisson(\;).

Learning
Objectives

Review of LM

Logistic
Regression

Poisson
Regression

The Assumption
of Independence



Poisson Regression
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Poisson Regression: The Model

» Poisson regression is often used to model count data
» Why are count data special?
» Count data are non-negative
» Count data take integer values
» Count data often violate the assumption of “constant
variance”

» Count data often follow a Poisson distribution
» Consider K ~ Poisson(\). E(K) =7, Var(K) =, pmf?
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Poisson Regression: Motivating Example

» Neurons may fire selectively for particular types of
stimuli

» To understand whether a neuron is a visual-selective
neuron, 20 trials were run for each of the five image
categories:

» animal, fruit, kids, military, space

» In each trial, the number of spikes (the number of times
that the neuron fired) within a 1-second window was
recorded
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Poisson Regression

library(tidyverse)
#https://www.ics.uci.edu/~zhaozia/Data/chosen_neuron_data.csv
chosen_neuron_data <- read_csv(

"https://www.ics.uci.edu/~zhaoxia/Data/chosen_neuron_data.csv")
chosen_neuron_data <- chosen_neuron_datal[, c(2:4)]
dim(chosen_neuron_data)

## [1] 100 3

names (chosen_neuron_data)

## [1] "trial_number" "n_spikes" "image_categ"

Learning
Objectives
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Poisson Regression

Learning

attach(chosen_neuron_data) Objectives
# Even split of image categories among trials Review of LM
table(image_categ) Logistic

Regression

GLM
## image_categ
i Animal Fruit Kids Mllltary Space The Assumption
## 20 20 20 20 20 of Independence

sapply(split(n_spikes, image_categ), mean)

##  Animal Fruit Kids Military Space
## 0.05 3.60 0.15 0.25 0.05



Poisson Regression: Visualize the count

data (by image category)

Zhaoxia Yu

Learning
Objectives

neuron_trial_plot Review of LM

Logistic
Regression

9 GLM
8

The Assumption
of Independence

2-
5] ] I

20 40 60 80 100
Trial (sorted by image category)

Image Category . Animal . Fruit Kids . Military .

Total Spikes Detecte
to 1.2 seconds after stim
w




Poisson Regression

Learning
Objectives

Review of LM

Logistic

# Fit generalized linear model Regression

# Poisson GLM with the default log link function GLM
poisson_fit <- glm(n_spikes ~ image_categ-1,

data = chosen_neuron_data,

family = poisson(link="log"))
# Tabulate the coefficient estimates
poisson_neuron_table <- summary(poisson_fit)$coefficients The Assumption
row.names (poisson_neuron_table)=c("Animal", "Fruit", of Independence

"Kids", "Military", "Space")



Poission Regression: Model Summary

Learning
Objectives
Review of LM
Logistic

poisson_neuron_table Regression
GLM

## Estimate Std. Error =z value Pr(>lzl)

## Animal -2.995732 0.9999998 -2.995733 2.737861e-03

*
#*

Fruit .280934 0.1178511 10.869084 1.618171e-27
## Kids -1.897120 0.5773503 -3.285908 1.016541e-03
# Military -1.386294 0.4472132 -3.099851 1.936181e-03
## Space -2.995732 0.9999998 -2.995733 2.737861e-03

-

The Assumption
of Independence

*



Poisson Regression: Visualize Observed v.s.

Fitted

Learning
Objectives

Review of LM

poisson_obs_fit_plt Logistic

Regression

GLM

20

=
>

The Assumption
of Independence

.
)

Number of Trials
®

|.| N N R TP
2 4 5 6 7 8 9
Total Spikes Detected (0.2 to 1.2 seconds after stimulus onset)

« Poisson Distribution Fit  Image Category [l Animal [l Fruit Kids I Miitary [l Space



The Deviance of GLM object

» Next, we would like to discuss the significance of the
image__categ variable. To do so, we first look at the
deviance of a GLM object

» The deviance of a GLM object obj is

2[/Og(Lsaturated) - Iog(Lobj)]
» What is the null hypothesis of no visual-selection?
Ho : Banimal = BFruit = Bkids = BMiIitary = BSpace

» What is the d.f. in a likelihood ratio test (LRT)?
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Poission Regression: The Overall

Significance
Learning
Objectives
Review of LM
» Consider two nested models objl and obj2, the Rogpoasion
difference in their deviances is GLM

2[log(Lobj2) — log(Lonj1)]; o
e Assumption
of Independence

which is the LRT statistic.
» What is the saturated model?

» Logistic: i = y; and Leatyrated = 1
Vi g=Yi

. . y;'e Vi

» Poisson: A\i = y; and Leaturated = | [; =



Poission Regression: The Overall

Significance

Learning
Objectives
Review of LM
Logistic

# Test for visual selectivity: Likelihood Ratio Test Regression

poisson_fit0 = glm(n_spikes ~1, data=chosen_neuron_data, family=poisson(link="log"))

anova(poisson_fito, poisson_fit, test = "LRT") GLM

## Analysis of Deviance Table

## The Assumption

## Model 1: n_spikes ~ 1 of Independence

## Model 2: n_spikes ~ image_categ - 1
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)

#o1 99 260.985
#t 2 95 81.213 4  179.77 < 2.2e-16 *k*
#t ——-

## Signif. codes: 0 ’#%x’ 0.001 ’#x’ 0.01 ’*> 0.05 >.” 0.1 > > 1



Poission Regression: The Overall

Significance
Learning
Objectives
Review of LM
Logistic
# Test for visual selectivity: Rao's score test Regression
anova(poisson_fit0, poisson_fit, test = "Rao") Y

## Analysis of Deviance Table

The Assumption

## Model 1: ik ~ 1
ode n_spikes of Independence

## Model 2: n_spikes ~ image_categ - 1
##  Resid. Df Resid. Dev Df Deviance Rao Pr(>Chi)

# 1 99 260.985
# 2 95 81.213 4  179.77 236.3 < 2.2e-16 *x*x
# -

## Signif. codes: 0 ’#%x’ 0.001 ’*x’ 0.01 ’*> 0.05 ’.” 0.1 > > 1



Poission Regression: The Overall

Significance

Learning
Objectives

Review of LM

Logistic
Regression
# Test for visual selectivity: Wald test. I will exzplain reparameterization in a few slides
poisson_fit_repara <- glm(n_spikes ~ image_categ, data = chosen_neuron_data, LM
family = poisson(link="log"))
Wald.stat=poisson_fit_repara$coefficients[2:5] %*J,
solve (summary(poisson_fit_repara)$cov.unscaled[2:5,2:5]) %xJ
poisson_fit_repara$coefficients[2:5]

The A ti
1-pchisq(Wald.stat, df=4) € Assumption

of Independence

## [,11
## [1,] 0



Poission Regression: Model Interpretation

summary (poisson_fit)$coefficients

Learning
Objectives

## Estimate Std. Error z value Pr(>lzl) ReviewloffL M

## image_categAnimal -2.995732 0.9999998 -2.995733 2.737861e-03 IOEistic

## image_categFruit 1.280934 0.1178511 10.869084 1.618171e-27 Re:ression

## image_categKids -1.897120 0.5773503 -3.285908 1.016541e-03 -

## image_categMilitary -1.386294 0.4472132 -3.099851 1.936181e-03 GLM

## image_categSpace -2.995732 0.9999998 -2.995733 2.737861e-03

> Bruir = 1.2809: What does it tell us? The Assumption

P Recall that we used the log link of Independence



Poission Regression: Model Interpretation

» Note that the model poisson_fit does not include 5.
» That's why we can estimate Sanimal, BFruit: BKids:
/BMiIitary: /Bspace-
» Question: how should we interpret the estimated
coefficients if the intercept term was included?
» Try poisson_fit_repara <- glm(n_spikes ~
image_ categ, data = chosen_neuron_data, family =
poisson(link="log"))
> Are the two models equivalent? (Lab activity)
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The Assumption
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Poisson Regression: Model Interpretation

» Re-parameterization

» Parameters:
» poisson_fit:
» poisson_fit_repara:

» Compare the summary of the two models:
> Are they different models?
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GLM

The Assumption
of Independence



Parameterization 1: without intercept

summary (poisson_fit)

Learning
Objectives

##

## Call: Review of LM

## glm(formula = n_spikes ~ image_categ - 1, family = poisson(link = "log"),

## data = chosen_neuron_data) Logistic

## Regression

## Deviance Residuals:

# Min 1Q  Median 30 Max GLM

## -2.6833 -0.5876 -0.3162 -0.3162 2.3861

##

## Coefficients:

## ) ) Estimate Std. Error z value Pr(>|z|) The Assumption

## image_categAnimal -2.9957 1.0000 -2.996 0.00274 *x*

I " of Independence

## image_categFruit 1.2809 0.1179 10.869 < 2e-16 x¥x*

## image_categKids -1.8971 0.5774 -3.286 0.00102 *x*

## image_categMilitary -1.3863 0.4472 -3.100 0.00194 **

## image_categSpace -2.9957 1.0000 -2.996 0.00274 *x*

## -

## Signif. codes: O ’#*x*> 0.001 ’x**’ 0.01 ’*’ 0.05 ’.” 0.1’ ’ 1

##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 264.439 on 100 degrees of freedom

## Residual deviance: 81.213 on 95 degrees of freedom

## AIC: 163.18

##

B Mirmlime ~f Tialime Damamtomr S+ mmmmdst mme e O



Parameterization 2: with intercept

summary (poisson_fit_repara)

Learning
Objectives

##

## Call: Review of LM

## glm(formula = n_spikes ~ image_categ, family = poisson(link = "log"),

## data = chosen_neuron_data) Logistic

## Regression

## Deviance Residuals:

# Min 1Q  Median 30 Max GLM

## -2.6833 -0.5876 -0.3162 -0.3162 2.3861

##

## Coefficients:

## Estimate Std. Error z value Pr(>lzl) The Assumption

## (Intercept) -2.996e+00 1.000e+00 -2.996 0.00274 *x

A ) of Independence

## image_categFruit 4.277e+00 1.007e+00  4.247 2.16e-05 *%x*

## image_categKids 1.099e+00 1.155e+00 0.951 0.34139

## image_categMilitary 1.609e+00 1.095e+00 1.469 0.14178

## image_categSpace -3.140e-16 1.414e+00  0.000 1.00000

## -

## Signif. codes: O ’#*x*> 0.001 ’x**’ 0.01 ’*’ 0.05 ’.” 0.1’ ’ 1

##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 260.985 on 99 degrees of freedom

## Residual deviance: 81.213 on 95 degrees of freedom

## AIC: 163.18

##

B Mirmlime ~f Tialime Damamtomr S+ mmmmdst mme e O



Linear Functions of Parameters

Learning
Objectives
» The Poisson regression we fit provides estimates of Review of LM
ﬁAnimaI: IBFruitv BKids: Bl\/li/itaryr BSpacer which are the |0g E‘ﬁiﬁﬁ;o"
of the Poisson rates GLM

> What if we are interested in difference between specific
groups7 e.g.,

The Assumption

5Fru1t ﬁAnlma of Independence
[ 5Frmr+ﬁAmma/+ﬁKlds+5M,mary+,3space

[ ﬁFruit _ ﬁAnima/+,3desJ;ﬁMmtary+ﬁ$pace

» They are linear functions of the coefficients, i.e., in the
form of a3, where a is a 5-by-1 vector.



Linear Functions of Parameters

» LM/GLM provides not only estimated coefficients but
also the variance-covariance of the estimated covariates
> Let /6 - C(/Bla e 7BP)T
P> Let X2 denote the estimated variance-covariance of 5
P> Let a be linear coefficients

Learning
Objectives

Review of LM

Logistic
Regression

GLM

The Assumption
of Independence



Inference of Linear Functions of Parameters

Learning
Objectives
» Consider a linear function : a’ 3 Aoty
» Estimate: aTBA Rogpoasion
> Variance of the estimate: Var(a’ ) = a’%a GLM
» Standard Error (SE): s.e.(a’ ) = VaT%a
> A 95% confidence interval: The Assumption

of Independence

(aT,éA’ —1.96 * s.e.(aTﬁA), a’ B +1.96 « s.e.(aTﬁA))

T T
> Z-value: 25-2°8
s.e.\a



Inference of Linear Functions of

Parameters: Example

Learning

Objectives

Review of LM
> Parameter Of interest: IBFruit+/8Animal+/BKgis+6Military+55pacs Logistic

Regression

GLM
a=matrix(rep(1/5,5), 1)
aj*%poisson_fit$coefficients #estimate

The Assumption
23 [,1] of Independence
## [1,] -1.598789

sqrt (a)*%summary (poisson_fit)$cov.unscaled’*%t(a)) #s.e.

## [,1]
## [1,]1 0.3192003



Linear Contrasts

Learning
Objectives

Review of LM
» Linear contrasts are a special family of linear functions Logistic

Regression
> Wesay a’ 3 =13, a;f is a linear contrast if 3" a; = 0, GLM
where a = (a1, -, ap)".

The Assumption
of Independence

» Often, we are interested in whether a linear contrast is
zero, ie., Hyp:a'B=0
aT/S’—O

> Zz- I
z-value: e (a7



Linear Contrast (e.g., Fruit vs Animal)

a <- matrix(c(-1, 1, 0, 0, 0), 1)

#estimate

fruit_animal_est = aj*%poisson_fit$coefficients

#variance

fruit_animal_var = aj*)summary(poisson_fit)$cov.unscaled’*%t (a)
#z value

print(fruit_animal_est/sqrt(fruit_animal_var))

## [,1]
## [1,]1 4.247274

Learning
Objectives

Review of LM
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Linear Contrast (e.g., Fruit vs Animal) with

the multcomp package

library (multcomp)
a <- matrix(c(-1, 1, 0, 0, 0), 1)
t <- glht(poisson_fit, linfct = a)

summary (t)

##

##  Simultaneous Tests for General Linear Hypotheses
##

## Fit: glm(formula = n_spikes ~ image_categ - 1, family = poisson(link = "log"),
## data = chosen_neuron_data)

##

## Linear Hypotheses:

## Estimate Std. Error z value Pr(>|zl)

## 1 == 4.277 1.007 4.247 2.16e-05 **x

## -

## Signif. codes: O ’#*%’ 0.001 ’**’ 0.01 ’*’ 0.05 .’ 0.1’ * 1

## (Adjusted p values reported —- single-step method)

Learning
Objectives

Review of LM

Logistic
Regression

GLM

The Assumption
of Independence



Multinomial Logistic Regression

q Learning
library(nnet) Objectives
multinom(diagnosis ~ age + female + educ + lhippo + rhippo)

Review of LM
Logistic
## # weights: 21 (12 variable) Regression
## initial value 2966.253179
## iter 10 value 2372.326777 GLM

## final value 2288.461323
## converged

The Assumption

## Call: of Independence

## multinom(formula = diagnosis ~ age + female + educ + lhippo +

## rhippo)

##

## Coefficients:

##  (Intercept) age female educ lhippo rhippo
## 1 3.671844 0.026773068 -1.237127 -0.04694669 -1.251316 -0.4056775
## 2 8.147569 0.005473649 -1.473799 -0.06379482 -1.794730 -0.7967240
##

## Residual Deviance: 4576.923

## AIC: 4600.923



Other concerns

» Dispersion: under- or over-dispersion S
i i i Objectiv
» Zero-inflated Poisson Regression jectives
i Review of LM
> Model selection ... eview o
Logistic

Regression

hist(n_spikes)
GLM

Histogram of n_spikes
The Assumption
of Independence

80

Frequency
40

n_spikes

#Interested in how to fit a zero-inflated Poisson regression? See the link
#https://www.rdocumentation.org/packages/pscl/versions/1.5.5/topics/zeroinfl
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Independent Observations

» The common assumption we have made in LM and
GLM is that the observations are independent with each
other

» This is not always the case

» Examples:
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Independent Observations

Learning

Objectives
Review of LM
» What is the consequence of ignoring data S
independence? -
» The damage is probably worse than violations of Poisson

distributions Regression
» Fortunately, tools have been developed to account for

data dependence
> Linear Mixed-Effects Model (LME)
> Generalized Linear Mixed-Effects Model (GLMM)
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