Motivating

UC Irvine ISI-BUDS 2023 Day 10: Example

From LM to LME

Mixed-Effects Models

LM, LME, GLM,
and GLMM

LME Examples:

Zhaoxia Yu Example 1

LME Examples:
Example 2

LME Examples:

Example 3

2023-07-21
GLMM: Example
4



Learning Objectives

» Motivating Example o
From LM to LME
» LM, LME, GLM, and GLMM e e
and GLMM
» LME Examples: Examples 1 - 3 LME Examples:
Example 1
» Generalized Linear Mixed-Effects Model (GLMM): LME Examples:
Example 4 Sl
Bxample 3
» The slides are based on my published work: e
https://doi.org/10.1016/j.neuron.2021.10.030 ‘

https://yu-zhaoxia.github.io/MM_in_Neuroscience/


https://doi.org/10.1016/j.neuron.2021.10.030
https://yu-zhaoxia.github.io/MM_in_Neuroscience/

Motivating Example

From LM to LME

LM, LME, GLM,
and GLMM

LME Examples:
Example 1

LME Examples:
Example 2

LME Examples:
Example 3

GLMM: Example
4



Example 1: Data

» 1200 neurons from 24 mice; 5 conditions/groups
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Example 1: Data

Zhaoxia Yu

Exl=read.csv("https://wuw.ics.uci.edu/~zhaoxia/Data/BeyondTandANOVA/Examplel.txt", head=T)

#Do not forget to factor the treatment IDs and animal IDs From LM to LME
#This is particularly important for the treatment_idz,
#else the values will be treated as numerical values, rather than levels LM, LME, GLM,
Exi$treatment_idx = as.factor(Exi$treatment_idx) and GLMM
Ex1$midx = as.factor (Ex1$midx) N e
head (Ex1)

Example 1

LME Examples:
## res treatment_idx midx Example 2
## 1 1.6326840 1 1 LME Examples:
## 2 0.9698389 1 1

Example 3
## 3 0.5184931 1 1
## 4 0.3031273 1 1 GLMM: Example
## 5 0.5815271 1 1 4
## 6 0.5001287 1 1



Example 1: Data Visualization

» boxplots by R base graphics

#Use base graphics
mycolors=rep(1:5, c(7,6,3,3,5)) #different colors for different treatment groups

#a basic plot of bozplots by mice
#Mice in the same treatment groups use the same color
boxplot(res~midx, data=Exl, col=mycolors, xaxt="n")
axis(1, at = 1+c(1, 8, 14, 17, 20),

labels = c("baseline", "24h", "48h", "72h", "1wk"))

#bozplot with jitter
boxplot (res~midx, data=Exl, col=0, xaxt="n")
axis(1, at = 1+c(1, 8, 14, 17, 20),
labels = c("baseline", "24h", "48h", "72h", "1lwk"))
stripchart(res ~ midx, vertical = TRUE, data = Ex1,
method = "jitter", add = TRUE, pch = 20, col = mycolors)
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Violin plots generated by the vioplot

package

From LM to LME

par(mfrow=c(2,1)) #split the plot window to two vertically-stacked ones LM, LME, GLM,
vioplot(res~midx, data=Exl, col=mycolors, xaxt = "n") and GLMM
axis(1, at = 1+c(1, 8, 14, 17, 20), .
labels = c("baseline", "24h", "48h", "72h", "iwk")) Sl i
Example 1
#violin plot with jitters LME Examples:
vioplot(res~midx, data=Ex1, col=0, xaxt="n") Example 2
stripchart(res ~ midx, vertical = TRUE, data = Ex1,
method = "jitter", add = TRUE, pch = 20, col = mycolors) LME Examples:
axis(1l, at 1+c(1, 8, 14, 17, 20), Example 3

labels = c("baseline", "24h", "48h", "72h", "1wk"))
GLMM: Example
4
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Fancy plots generated by ggplot2 package

plotl=ggplot(Ex1, aes(x = midx, y = res, fill=treatment_idx)) +
geom_violin()

#bozplot within violin plot

plot2=ggplot (Ex1, aes(x = midx, y = res, fill=treatment_idx)) +
geom_violin()+
geom_boxplot (width=0.1)

grid.arrange(plotl, plot2, ncol=1, nrow=2)#library(gridEctra)
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Example 1: The “Familiar” Analysis

summary (aov(res~treatment_idx, data=Ex1))

## Df Sum Sq Mean Sq F value Pr(>F)

## treatment_idx 4 246.6 61.66 108.1 <2e-16 ***

## Residuals 1195 681.6 0.57

## ——-

## Signif. codes: 0 ’#%*x’ 0.001 ’*x’ 0.01 ’*’ 0.05 ’.” 0.1’ > 1

summary (lm(res~treatment_idx, data=Ex1))

##

## Call:

## 1m(formula = res ~ treatment_idx, data = Ex1)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.7076 -0.5283 -0.1801 0.3816 5.1378

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.02619 0.03997 25.672 < 2e-16 *x*x*

## treatment_idx2 0.78286 0.05868 13.340 < 2e-16 *x*x*

## treatment_idx3 0.81353 0.07551 10.774 < 2e-16 *x*x*

## treatment_idx4 0.16058 0.07349 2.185 0.0291 *
0.

## treatment_idx5 -0.36047
## -

## Signif. codes: 0 ’#%*x’ 0.001 ’*x’ 0.01 ’%> 0.05 ’.” 0.1’ > 1
##

H## Recidiial et+andard error: O 7EE? An 1198 Aeoreecece nf Ffreedoam

06266 -5.753 1.11e-08 *x*x*
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Example 1: The “Familiar” Approach for

Null Data

o . From LM to LME
» Is the familiar approach valid? We evaluate the method » LMEtGLM
using data generated under the null hypothesis and GLMM

LME Examples:
Example 1

> We can generate a null data set by permuting the e
xamples:

treatment group labels of the animals Example 2

LME Examples:

» We generate 1000 null data sets and check how many e
times the familiar approach will reject the null etk

hypothesis of no group difference



Example 1: The “Familiar” Approach for

Null Data

treatment=as.factor(rep(1:5, c(7,6,3,3,5)))
ncell=sapply(split(Ex1, Ex1$midx), dim)[1,]
#generate pseudo (permuted) 1000 times by randomly
#shuffling the treatment labels across mice
pvalues=rep(NA, 1000)#initialize a vector of p-values
for(i in 1:1000) {
Exl.perm = data.frame(res=Exl$res,
treatment_idx=rep(sample(treatment),ncell), midx=Ex1$midx)
pvalues[i]=anova(lm(res~treatment_idx, data=Ex1.perm))$"Pr(>F)"[1] }
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Example 1: P-values using 1000 Null Data

sets

» What does the histogram suggest?

From LM to LME

hist(pvalues)
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Histogram of pvalues.
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Why does LM fail for Example 17

» This because the observations are not independent

» We can compute Intra-Class Correlation (ICC) to
quantify the magnitude of clustering due to animal
effects.

Saline (7 mice) 24h (6 mice) 48h (3 mice) 72h (3 mice) 1wk (5 mice)

# of cells 357.0000000 309.0000000 139.000000 150.000000 245.0000000
ICC 0.6209487 0.3300633 0.017803 0.628109 0.5369458

LI L T4
; e
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ICC Analysis of Example 1

» The ICC indicates that the dependency due to
clustering is substantial.

» Therefore, the 1,200 neurons should not be treated as
1,200 independent cells.

» When dependence is not adequately accounted for, the
type | error rate can be much higher than the
pre-chosen level of significance.
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LM ( ) for Example 1

» Consider Example 1. Let

» Yj; indicate the jth observed response of the ith mouse. E/::;::s:cmg
> Xx; be the treatment label, with x;; = 1 for baseline,

xjj = 2 for 24 hours, x;; = 3 for 48 hours, x; = 4 for 72 LM, LME, GLM,

hours, and x; = 5 for 1 week after ketamine treatments. "¢ &-VM
» In the inner mathematical computation, four dummy t’;ﬂ,ﬁ,,f,ff’l“"'“:
variables, which take value 0 or 1, are generated: NI e

xjj1 = 1 for 24 hours, x;jj2 = 1 for 48 hours, x;;3 =1 for e
LME Examples:

72 hours, and xjj 4 = 1 for 1 week after ketamine Example 3
treatments, respectively. GLMM: Example

4

Yij = Bo + xjj,181 + ... + Xij,aB4 + €jj,
i=1,...,24j=1,... n;

where n; is the number of observations from the ith mouse.



LME for Example 1

» The 1200 observations are clustered by animal. We —
account for the resulting dependence by adding an Example

animal specific effect, as follows:

LM, LME, GLM,
and GLMM

Vi = fo b xi 1Byt s b
i = Bo+Xj1B1+ ... + xjaba+ ui + €, P
I:133241J:1,7n,, Example 1

LME Examples:

Example 2
where
LME Examples:
Example 3
» u; indicates the deviance between the overall intercept 3y and the mean specific to the ith
mouse GLMM: Example
4

> €jj represents the deviation in pCREB immunoreactivity of observation (cell) j in mouse i from
the mean pCREB immunoreactivity of mouse i

> (Bo, B1, B2, B3, B4) are assumed to be fixed but unknown

» (up,--- ,upy) are treated as independent and identically distributed random variables from a
normal distribution with mean 0 and a variance parameter that reflects the variation across
animals.



LME for Example 1

» Similar to the treatment variable, for the animal 1D

variable, the users do not need to define the dummy o
variables, which are generated by R automatically in its
inner working. LM, LME, GLM,
. i i and GLMM
> Thus,.equwalehtly, one could write the previous LME Eramples
equation by using a vector (zjj1,. .., zj24) of dummy B
variables for the cluster/animal memberships such that i
zjx = 1 for i = k and 0 otherwise: LME Examples:
Example 3

GLMM: Example
4

Yij = Bo+Xij1f1+ ... +xjaba+ zjaur + ... + zj2al24 + €jj,
i=1,....24;,j=1,... n;



LME for Example 1

Motivating
Example
» Y is modeled by three components: LM, LME, GLM,
» the fixed-effects from the covariates (1, - ., Xjj,4) and irl::EGIIE_::r’:Iples-
the overall intercept g, which is the population mean Example 1
of the reference group in this example LME Examples:
> the random-effects due to the clustering (zj1,...,2zj04) "7

LME Examples:

» the random errors €'s Eoanniag

GLMM: Example
4



R Packages for LME

> Two major packages are ‘nlme’ and ‘Ime4".

» Syntax: Bample
» ‘nlme::Ime(res~treatment_idx, data= Ex1, random = ~
1|midx)’ LM, LME, GLM,
» ‘Ime4::Imer(res ~ treatment_idx+(1|midx), data=Ex1)’ s e
. LME Examples:
» Note that, similar to the fixed effects, for the Example 1
random-effects, we don't need to created the dummy Lk e
) ) i i xample
vanables._ This will be done |nter|.1a||y by R. LME Eramples
» For the fixed-effects (treatment_idxhere), make sure Example 3

GLMM: Example

that it is a factor, not numerical, as the levels “1-5" b

denote different times points
» For the random-effects from “midx"(mice), R treated it
as a factor with different levels (animals)
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LM and LME: Matrix Format

> LM: Y = X3 +¢ Example
» a linear predictor Xz From LM to LME
» random errors ¢ are independent, have a zero mean and
a constant variance.
> ¢~ N(0,021) is used for deriving t- and F-tests.
Typically this assumption is not very critical as long as

LME Examples:
Example 1

LME Examples:

the sample size is not too small Example 2
> LM E: Y = Xﬁ + Zu + € tl;/cl.ﬁ‘slzag\ples:
» fixed-effects: a linear predictor X3 GLMM: Example

> random-effects: Zu, where u ~ N(0,G). Eg., G=02l.
» random errors: € ~ N(0, o?l), independent with u.



GLM and GLMM

» The components of GLM: e
» a linear predictor X3 From LM to LME
» a link function to connect E(Y|X) and Xg:
g(E(Y[X)) = Xp
> a distribution for Y given E(Y|X) tiﬂ,ﬁ,gﬂ‘"'es;
» The components of GLMM: LME Examples:
» fixed-effects: a linear predictor X3 L:::I;:amples:
» random-effects: Zu, where u ~ N(0,G). E.g., G =02l.  Example 3
» a link function to connect E(Y|X,u) and Xg: GLMM: Example
g(E(Y|X,u)) = XB + Zu “

» a distribution for Y given E(Y|X)



LME Examples: Example 1
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LME Examples: Example 2

. . . . Motivating

# The nlme:lme function specifies the fized effects in the formula Example

# (first argument) of the function, and the random effects

# as an optional argument (random=). The vertical bar | denotes that From LM to LME

# the cluster is done through the animal id (midz)

obj.lme=1me(res~treatment_idx, data= Ex1, random = ~ 1|midx, method="ML") LM, LME, GLM,

summary (obj.1lme)$tTable and GLMM

## Value Std.Error DF t-value p-value

## (Intercept) 1.0008500 0.1750995 1176 5.7158919 1.382236e-08 LME Examples:

## treatment_idx2 0.8191952 0.2577129 19 3.1787124 4.944475e-03 Example 2

## treatment_idx3 0.8427397 0.3200466 19 2.6331777 1.638113e-02

## treatment_idx4 0.1896571 0.3197681 19 0.5931081 5.601033e-01 LMEJExamples:

## treatment_idx5 -0.3202969 0.2713859 19 -1.1802269 2.524757e-01 Example 3
GLMM: Example
4

» The results from LME is more realistic



summary (obj . Ime)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
#i

Linear mixed-effects model fit by maximum likelihood

Data: Ex1
AIC BIC logLik
2272.961 2308.592 -1129.481

Random effects:
Formula: ~1 | midx

(Intercept) Residual
StdDev: 0.4545821 0.5995347
Fixed effects: res ~ treatment_idx
Value Std.Error DF t-value p-value
(Intercept) 1.0008500 0.1750995 1176 5.715892 0.0000
treatment_idx2 0.8191952 0.2577129 19 3.178712 0.0049
treatment_idx3 0.8427397 0.3200466 19 2.633178 0.0164
treatment_idx4 0.1896571 0.3197681 19 0.593108 0.5601
treatment_idx5 -0.3202969 0.2713859 19 -1.180227 0.2525
Correlation:
(Intr) trtm_2 trtm_3 trtm_4
treatment_idx2 -0.679
treatment_idx3 -0.547 0.372
treatment_idx4 -0.548 0.372 0.300
treatment_idx5 -0.645 0.438 0.353 0.353
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.5410173 -0.5737059 -0.1133680 0.4733263 8.8578521

Number of Observations: 1200
Number of Croupns: 24
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anova(obj.1lme)

##
## (Intercept)
## treatment_idx

numDF denDF

1
4

F-value p-value

1176 179.66421 <.0001

19

5.89455 0.0029

UC Irvine
ISI-BUDS 2023
Day 10:
Mixed-Effects
Models

LME Examples:
Example 1




LME Examples: Example 2
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LME Examples: Example 2

» Research question: determine how in vivo calcium o
(Ca++) activity of PV cells (measured longitudinally by .. v w0 oue
the genetically encoded Ca++ indicator GCaMP6s) LM, LME, GLM,

. . and GLMM
changes over time after ketamine treatment
. LME Examples:

» Study: Ca++ event frequencies were measured at 24h, Example 1
48h, 72h, and 1 week after ketamine treatment in four
mice

LME Examples:

> Want to compare Ca++ event frequency at 24h to the Example 3
other three time points. L S
» In total, Ca++ event frequencies of 1,724 neurons were
measured.



Example 2: Data

library(nlme)

library(1me4)

library(lmerTest)
Ex2=read.csv("https://www.ics.uci.edu/~zhaoxia/Data/BeyondTandANOVA/Example2.txt", head=T)
Ex2$treatment_idx=Ex2$treatment_idx-4

Ex2$treatment_idx=as.factor (Ex2$treatment_idx)

### covert the variable of mouse IDs to a factor

Ex2$midx=as.factor (Ex2$midx)
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Example 2: Wrong analysis

1m.obj=lm(res~treatment_idx, data=Ex2)
summary (1m.obj)$coefficients

#H# Estimate Std. Error t value Pr(>ltl)
## (Intercept) 0.71490545 0.01233741 57.9461618 0.000000e+00
## treatment_idx2 -0.07802047 0.01701121 -4.5864155 4.835037e-06
## treatment_idx3 0.00914741 0.01718859 0.5321791 5.946707e-01
## treatment_idx4 0.04971562 0.01633230 3.0440051 2.369903e-03
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Example 2: Wrong analysis

» The LM (including ANOVA, t-test) analysis results
indicate

» significantly reduced Ca++ activity at 48h relative to
24h with p = 4.8 x 107°

» significantly increased Ca++ activity at 1week
compared to 24h with p = 2.4 x 1073

» However, if we account for repeated measures due to
cells clustered in mice using LME, the changes are no
longer significant
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Example 2: LME

lmer.obj=lmerTest: :lmer(res~treatment_idx+(1|midx), data= Ex2, REML="FALSE")

summary (1mer.obj)$coefficients

## Estimate Std. Error
## (Intercept) 0.699786009 0.03484986
## treatment_idx2 -0.017490109 0.01726513
## treatment_idx3 0.009353984 0.01657856
## treatment_idx4 0.029448530 0.01656107

df t value Pr(>ltl)

4.901964 20.0800262 6.756672e-06
1723.485832 -1.0130306 3.111877e-01
1720.292658 0.5642219 5.726767e-01
1719.621372 1.7781780 7.555129e-02

Motivating
Example

From LM to LME

LM, LME, GLM,
and GLMM

LME Examples:
Example 1

LME Examples:
Example 3

GLMM: Example
4



Example 2: LM vs LME

Motivating
Example
Estimated changes of Ca+ event frequency (the baseline is From LM to LME
24h after treatment) LM, LME, GLW,
48h 72h 1wk txﬁ‘:fl);arlnples:
LM est -0.078 £.017 0.009+0.017 0.05040.016
LM p 4.8 x 107° 0.595 2.4 %1073
LME est -0.0174+0.017 0.0094+0.017 0.0294+0.017 EME;;"

LME p 0.311 0.573 0.076 GLMM: Example

4



Pooling data naively is not a good idea
. \ - !
- # . + Motivating
e + Example
1 ' ! ! From LM to LME

ES 24 hour LM, LME, GLM,

BS 4shour
;72 hour and GLMM

u
15+ oo
. 10~ 3 LME Examples:
T*'é:ﬂ | %*T% Example 1
i | i !
Vouse ¢

LME Examples:

| Mouse 3 |
8 . . A ' i . - . .
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Figure 1: The boxplots of Ca++ event frequencies measured at
four time points. (A) Boxplot of Ca++ event frequencies using
the pooled neurons from four mice. (B) boxplots of Ca++ event
frequencies stratified by individual mice.



Pooling data naively is not a good idea

» Consider the change in Ca++ activities from 24h to 48h
» Pooled data from all mice:
» The box plots suggest reduction in Ca++ activities

» Individual mice data:
» The box plots of Mouse 2 suggest a noticeable reduction
» However, there was almost no change in Mouse 1
» Mouse 3 and Mouse 4 might suggest small increases,
rather than decreases
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Pooling data naively is not a good idea

» Why do the pooled data follow the pattern of Mouse 27

Motivating

24h 48h 72h ].Wk TOta| Example
Mouse1 81 254 88 43 466(27%) From LM to LME

Mouse 2 206 101 210 222 739 (43%) and GLMI
Mouse3 33 18 51 207 309 (18%) LME Exampie
Mouse 4 63 52 58 37 210 (12%)

Total 383 425 407 509 1,724 (100%)

LME Examples:
. E le 3
» Mouse 2 contributed 43% cells! ramee
GLMM: Example
4



Remark: on the minimum number of levels

for using random-effects

Motivating
Example

» In Example 2, the number of levels in the From LM to LME

random-effects variable is four, as there are four mice. LM, LME, GLM,
and GLMM

LME Examples:
Example 1

» According to Gelman and Hill 2006, it does not hurt to

use random-effects in this situation. E e
ples:
Example 3

GLMM: Example
4

» There is no unique answer on the minimum number of
levels for using random-effects.



Remark: on the minimum number of levels

for using random-effects

Motivating
Example

> An alternative is to include the animal ID variable as VeV
factor Wlth ﬁXGd animal eﬂ:eCtS. LM, LME, GLM,

. . .. and GLMM

» Neither of two approaches is the same as fitting an LM o
. LME Examples:
to the pooled Ce”S nalvely. Example 1

P> In a more extreme case, for an experiment using only
two monkeys for example,
) . . LME Examples:

> naively pooling data (such as neurons) is NOT Example 3

recommended. GLMM: Example
H . . 4

» a more appropriate approach is to analyze the animals
separately and then check whether the results from the
two animals are consistent



LME Examples: Example 3
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Example 3: Data Structure

> Ca++ event integrated amplitudes are compared
between baseline and 24h after ketamine treatment.

Motivating
Example

. From LM to LME
» 1244 cells were sampled from 11 mice

LM, LME, GLM,

» each cell was measured twice (baseline and after and Grm
i LME E les:
ketamine treatment) LMIE Examples
» correlation arises from both cells and animals, which St

creates a three-level structure:

» measurements within cells and cells within animals.
GLMM: Example

library(nlme) 4

library(1me4)
library(lmerTest)
Ex3=read.csv("https://www.ics.uci.edu/~zhaoxia/Data/BeyondTandANOVA/Example3.txt", head=T)



Example 3: LM vs LME

#### wrong analysis: using the linear model

summary (lm(res~treatment, data=Ex3[!is.na(Ex3$res),])) #0.0036

#### wrong analysis using t tests (paired or unpaired)

t.test (Ex3[Ex3$treatment==1,"res"], Ex3[Ex3$treatment==2,"res"], var.eq=T)
t.test (Ex3[Ex3$treatmen ,"res"], Ex3[Ex3$treatment ,"res"])

t.test (Ex3[Ex3$treatment==1,"res"], Ex3[Ex3$treatment==2,"res"], paired=T)

#LME

lme.objl=lme(res~ treatment, random =~1| midx/cidx,
data= Ex3[!is.na(Ex3$res),], method="ML")

summary (1me.obj1)

Motivating
Example

From LM to LME

LM, LME, GLM,
and GLMM

LME Examples:
Example 1

LME Examples:
Example 2

GLMM: Example
4



Example 3: LM vs LME

» LME and LM produce similar estimates for the Motivating
fix-effects coefficients ==

» the standard error of the LM is larger; the p-value based
on LME is smaller (0.0036 for LM vs 0.0001 for LME).  Siéiin

From LM to LME

» In this example, since the two measures from each cell LME Examples:
. . . Example 1
are positively correlated, the variance of the differences e
. . . xamples:
is smaller when treating the data as paired rather than Example 2
independent.
> A§ a result, L.M.E produce§ a smaller p-value L Ermle
» Rigorous statistical analysis is not a hunt for the 4

smallest p value (commonly known as p-hacking or
significance chasing)



boxplot of correlation

05

|

> _| . Motivating
Example

after
03

From LM to LME

LM, LME, GLM,
and GLMM

02

LME Examples:
o Example 1

0 1 2 3 4 5 6 LME Examples:
Example 2

baseline

Figure 2: (Left) the scatter plot of Ca++ event integrated GLMM: Example
amplitude at baseline vs 24h after treatment for the neurons from 8

four mice (labeled as 1, 2, 3 and 4) indicates that the baseline and
after-treatment measures are positively correlated. (Right) boxplot

of the baseline and after-treatment correlations of the 11 mice.



A note on “nested” random effects

Motivating
» When specifying the nested random effects, we used Zenmpls
“random =~1| midx/cidx". From H e EhE
» This leads to random effects at two levels: the mouse S
level and the cells-within-mouse level. LME Examples:
. ey . - . . E le 1
» This specification is important if same cell IDs might e
. . . LME Examples:
appear in different mice. Example 2

» When each cell has its unique ID, just like “cidx”
variable in Example 3, it does not matter and “random o e
=list(midx=~1, cidx=~1)" leads to exactly the same a
model.



A note on “nested” random effects

Zhaoxia Yu

Motivating
Example

From LM to LME

LM, LME, GLM,
### to verify that the cell IDs are indeed unique and GLMM
length(unique (Ex3$cidx))
#lme.obj2 is the same as lme.obj LME Examples:
lme.obj2=1me(res~ treatment, random =list(midx=~1, cidx=~1), data=Ex3[!is.na(Ex3$res),], nethBXanfley1

summary (1me.obj2) LME Examples:
Example 2

GLMM: Example
4



On models with more random effects

» The above LME model only involves random intercepts.

» There might be random effects due to multiple sources.

» A model with more random-effects might be a better
choice.

» Visualization is a useful exploratory tool to help identify
an appropriate model.

Motivating
Example

From LM to LME

LM, LME, GLM,
and GLMM

LME Examples:
Example 1

LME Examples:
Example 2

GLMM: Example
4



models with more random effects

mouse A mouse B mouse A mouse B

6 8 10

ater

Motivating
Example

002 48 8 1w
02 48 8w

From LM to LME

mouse D LM, LME, GLM,
and GLMM

mouse C mouse D

1

LME Examples:
Example 1

0 2 4 8 8 1«
024 68 10
after
024658 1

0 2 4 58 8

LME Examples:
Example 2

Figure 3: Ca++ event integrated amplitudes at baseline vs 24h

after treatment for the neurons from four mice (labeled as A, B, C ELM'V“ Example
and D) with each dot representing a neuron. The four plots on the

left are “spaghetti” plots of the four animals with each line

representing the values at baseline and 24h after treatment for a

neuron; the four plots on the right report the before-after scatter

Alatre (with fitted ctraiacht linac 1icing A cimnle linear rearaccinn )



Compare Maodels with Different Random

Effects

» Skipped. See Example 3 of
https://yu-zhaoxia.github.io/MM_in_Neuroscience/

Motivating
Example

From LM to LME

LM, LME, GLM,
and GLMM

LME Examples:
Example 1

LME Examples:
Example 2

GLMM: Example
4


https://yu-zhaoxia.github.io/MM_in_Neuroscience/

On models with more random effects

» Tests can be used to compare models with different Motivating
Example
random effects :
» Need to be careful. See 6.4 of

From LM to LME

L . . . LM, LME, GLM,
https://yu-zhaoxia.github.io/MM_in_Neuroscience/ and GLMM

» For example 3, the model | chose have the following AT
xample 1

random-effects: AT
Example 2

“random=list(midx=~1, cidx=~treatment)"

GLMM: Example

» [t improves Ime.objl substantially. h

» Adding more random-effects does not lead to further
improvement


https://yu-zhaoxia.github.io/MM_in_Neuroscience/

Motivating
Example

From LM to LME

LM, LME, GLM,
and GLMM
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LME Examples:
Example 3



Generalized Linear Mixed-Effects Model

(GLMM)

Motivating
Example

From LM to LME

» The components of aGLMM: LM, LME. GLM,
> fixed-effects: a linear predictor X3 e

» random-effects: Zu, where u ~ N(0,G). E.g., G = Ub ] Example 1
> a link function to connect E(Y|X,u) and Xg: t:/:fn;);aglples:
g(E(Y|X, u)) = Xﬂ + Zu ti’;i‘séaglples:

» 3 distribution for Y



GLMM Examples: A Simulated Data Set

. . . Motivating
» The simulation used parameters estimated from real Example
data From LM to LME
» Eight mice were trained to do task LM, LME, GLM,
. ) . and GLMM
» The behavior outcome is whether the animals make the e e
xamples:
correct predictions Example 1
. . . . LME Examples:
» 512 trials in total: 216 correct trials, 296 wrong trials Example 2
» Mean neuronal activity levels (dF /F) were recorded for LME Examples:
Example 3

each trial
> We would like to model behaviors using neuronal data
(decoding)



Use Ime4::glmer to fit a GLMM

Motivating
library(1lme4) Example
library (pbkrtest)
waterlick=read.table("https://www.ics AuciAedu/~zhaoxia/Data/BeyondTandANUVA/waterlick_simAtxtFEDTM:LM'lt)) LME
summary (waterlick)

LM, LME, GLM,

and GLMM
## mouseID lick aff LME Examples:
## Min. :1.000 Min. :0.0000 Min. :-8.838 Example 1
## 1st Qu.:2.000 1st Qu.:0.0000 1st Qu.: 1.240
## Median :4.500 Median :0.0000 Median : 4.702 Lz (Bl
## Mean :4.527 Mean :0.4219 Mean : 4.810 Sl =
## 3rd Qu.:6.000 3rd Qu.:1.0000 3rd Qu.: 8.426 LME Examples:
## Max. :8.000 Max. :1.0000 Max. :20.456 Example 3

#change the mouseID to a factor
waterlick[,1]=as.factor(waterlick[,1])



Use Ime4::glmer to fit a GLMM

obj.glmm=glmer (1ick~dff+(1|mouseID),
data=waterlick,family="binomial")

#summary (obj.glmm)

#compute increase in odds and a 95/ CI

exp(c(0.06235, 0.06235-1.96%0.01986, 0.06235+1.96%0.01986))-1

## [1] 0.06433480 0.02370091 0.10658157

Motivating
Example

From LM to LME

LM, LME, GLM,
and GLMM

LME Examples:
Example 1

LME Examples:
Example 2

LME Examples:
Example 3



Interpret GLMM results

Motivating
Example

» The estimate of odd is 6.4% increase and a 95%
confidence interval is 2.3% to 10.7%

From LM to LME

LM, LME, GLM,

» The interpretation of the fixed effects for GLMM is and GLMM
complicated by both LME Examples:

» the random effects and R
» non-linear link functions Example 2

LME Examples:
Example 3

» Among typical mice, the odds of making correct licks
increased by 6.4% (95% C.l.: 2.4%-10.7%) with one
unit increase in dF /F.



LRT test

» Likelihood ratio test can be done by comparing the
model with and the model without the "dff” variance

(neuronal activity). Large-sample approximation is used.

#fit a smaller model, the model with the dff wariable removed
obj.glmm.smaller=glmer (lick~(1|mouseID),

data=waterlick,family="binomial")

#use the anova function to compare the likelihoods of the two models
anova(obj.glmm, obj.glmm.smaller)

#alternatively, one can use the "dropl" function to test the effect of dfff
dropl(obj.glmm, test="Chisq")

Motivating
Example

From LM to LME

LM, LME, GLM,
and GLMM

LME Examples:
Example 1

LME Examples:
Example 2

LME Examples:
Example 3



Improve accuracy of p-values

Motivating
Example
» The large-sample approximations in GLMM might not e (T
be accurate LM, LME, GLM,
and GLMM

» We show how to conduct a parametric bootstrap test
LME Examples:

. . Example 1
#The code might take a few minutes
PBmodcomp (obj.glmm, obj.glmm.smaller) LME Examples:
Example 2

LME Examples:
Example 3

» By default, 1000 samples were generated to obtain an
empirical null distribution of the likelihood ratio statistic



Convergence Issues

Motivating
Example

» GLMM is harder to converge than LME.
» Increase the number of iterations

From LM to LME

. . . .. . LM, LME, GLM,
» Switch to a different numerical maximization methods and GLMM
» Modify models such as eliminate some random effects LME Examples:
Example 1
https://rstudio-pubs-static.s3.amazonaws.com/33653__ SRS

57fc7b8e5d484c909b615d8633c01d51.html
https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html

LME Examples:
Example 3

https://m-clark.github.io/posts/2020-03-16-convergence/


https://rstudio-pubs-static.s3.amazonaws.com/33653_57fc7b8e5d484c909b615d8633c01d51.html
https://rstudio-pubs-static.s3.amazonaws.com/33653_57fc7b8e5d484c909b615d8633c01d51.html
https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html
https://m-clark.github.io/posts/2020-03-16-convergence/

Convergence Issues

Motivating
Example

From LM to LME

» Consider more robust methods such generalized e
estimating equation (GEE) LME Examples:
Example 1

LME Examples:
Example 2

» Oftentimes, Bayesian approaches are easier to converge LME Examples:
Example 3
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