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Model complexity

Model complexity

I In regression analyses, we can base model selection on a
pre-specified set of predictor variables

I variable selection which includes/excludes a particular
variable (’best’ subsets regression)

I shrinkage methods which include all predictors but controls
the size of the coefficients (one form of this is called ridge
regression...more later!)

I Each approach employs a measure of ‘complexity’
I number of covariates
I amount of control on the size of a coefficient

I Generically we will refer to this measure as a tuning
parameter
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Model complexity

Model complexity

I Determining a specific value for the tuning parameter is
part of the model selection process

I For best subsets regression the tuning parameter is fairly
easy to conceptualize, mainly because we can think in
terms of the interpretation of predictors and their
associated coefficients

I Other classes of restricted estimators also have
associated measures of complexity

I polynomial transformations
I piecewise polynomials
I natural cubic splines
I smoothing splines
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Model complexity

Model complexity

I Again, in each case we can still embed the choice of
tuning parameter into the model selection process

I in particular, we can view the determination of the level of
complexity of our model as a model selection problem

I The selection process requires a means of assessing any
given model

I test or generalization error
I error observed in an independent sample

I Our goal is to develop tools for the joint tasks of model
assessment and selection
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Generalization performance

Generalization performance

I We can formalize model assessment via a loss function
and use expected prediction error, EPE, as a criterion for
choosing a model

I choose f (·) which minimizes EPE

f ∗(·) = argminf (·) E[L(Y , f (X ))]

I Two examples of commonly considered loss functions are

1. Squared error (L2) loss: E(Y − f (X ))2

2. Absolute (L1) loss: E|Y − f (X )|
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Generalization performance

Generalization performance

I L2 loss is commonly used for many reasons, and in this
case the we have f ∗(·) = E [Y | X = x ], the conditional
expectation or regression function

I In this case there are many ways we can estimate
E [Y | X = x ] , and we would like a framework that can be
used to assess, and order, competing choices.
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Generalization performance

Generalization performance

I For a specified outcome variable Y and vector of predictor
variables X , suppose we have a prediction model f̂ (X ), the
form of which has been determined on the basis of a
training sample

I We measure errors between Y and f̂ (X ) by specifying a
loss function L(Y , f̂ (X ))

I The test or generalization error is the expected prediction
error over an independent test sample

EPE = EX ,Y

[
L(Y , f̂ (X ))

]
I the expectation is taken over the joint distribution of X and Y
I the average error, were the prediction model to be applied

to an independent sample from the population
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Generalization performance

Generalization performance

I If we knew the true joint distribution of (X ,Y ), we could
evaluate this expression directly

I feasible in a simulation study where we know the truth

I However, in real life situations we won’t know this joint
distribution and so, for a given f̂ (X ), we need to estimate
EPE

I A tempting choice could be the training error

err =
1
n

n∑
i=1

L(yi , f̂ (xi))
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Generalization performance

Generalization performance

I Unfortunately the training error is not a good estimate of
test error

I the problem is that the estimate ŷi = f̂ (xi) uses yi
I the solution is specifically chosen because is does well in

predicting the training data

I More specifically, the training error consistently decreases
with model complexity

I an extreme case is including a parameter for every
observation (a saturated model), so that f̂ (xi) = yi and there
is zero training error!

I A model with zero training error can be viewed as an
overfit to the training data and will typically generalize
poorly

I high sampling variability
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Model assessment and selection

Model assessment and selection

I We’ve already identified two separate goals we might have
in mind: model selection and model assessment

I Model selection deals with estimating the performance of
competing models in order to choose the best one

I estimate the test error distribution across these models
I choose the model which corresponds to the minimum

I Model assessment deals with evaluating the generalization
error when applying the final model to new data

I the final model is still chosen on the basis of the training
data

I seek an honest assessment of generalization error
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Model assessment and selection

Model assessment and selection

I In a data-rich situation, we could approach these goals
jointly by splitting the data into three parts:[

Training
data

] [
Validation

data

] [
Test
data

]

I Training data: fit the models
I obtain point estimates for any given model under

consideration
I repeated use across models

I Validation data: choose between models
I estimate the prediction error for model selection
I repeated use across models

I Test data: estimate generalization error of the final model
I one-time use, at the end of the analysis
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Model assessment and selection

Model assessment and selection

I Typically, we are not in a position to split the data into three
parts

I A compromise might be to split the data into two parts

[
Training

data

] [
Test
data

]

and approximate the validation step
I analytically: Cp, AIC and BIC
I efficiency sample re-use: cross-validation and the bootstrap

I Even still, it may not be that splitting into two parts is
feasible

I consider whether or not these methods can be used to
obtain reasonable assessments of generalization error
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The bias-variance decomposition

Squared error loss

I For a continuous outcome, suppose the data arise from
the model

Y = f (X ) + ε

I where E[ε] = 0 and Var[ε] = σ2

I Under L2 loss, the expected prediction error for an
estimate f̂ (·) at X = x0 can be decomposed as

EPE(x0) = σ2 +
{

E[f̂ (x0)]− f (x0)
}2

+ Var[f̂ (x0)]

I irreducible error + bias2 + variance
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The bias-variance decomposition

Squared error loss

I This decomposition is specific to the L2 loss but can be
evaluated for any given estimator

I For linear regression we have

EPE(x0) = σ2 +
{

f (x0)− E[f̂ (x0)]
}2

+ ||h(x0)||2σ2

I where h(x0) = x0(XT X)−1XT



Model Complexity

Generalization
Performance

Model Assessment
and Selection

The Bias-Variance
Decomposition

Assessing EPE

Estimation of
In-Sample Error

ISI-BUDS : Lecture 3 15

Assessing EPE

Assessing EPE

I Earlier, we noted that the training err

err =
1
n

n∑
i=1

L(yi , f̂ (xi))

would not typically be a good estimate of EPE

I In particular, we would expect err to be somewhat lower
than the true EPE

I that is, the estimate would be overly optimistic

I Part of the discrepancy is due to where the evaluation
points occur

I EPE refers to expected error on an independent sample
I referred to as extra-sample error



Model Complexity

Generalization
Performance

Model Assessment
and Selection

The Bias-Variance
Decomposition

Assessing EPE

Estimation of
In-Sample Error

ISI-BUDS : Lecture 3 16

Assessing EPE

Assessing EPE

I Methods that directly estimate the extra-sample error
include cross-validation and the bootstrap

I both involve the clever use and re-use of the training data

I Towards an analytic treatment of understanding the nature
of the optimism associated with using the training data to
evaluate generalization error, we can consider the
in-sample error

Err =
1
n

n∑
i=1

Ey

[
EYnew

[
L(Y new

i , f̂ (xi)
]]

I The notation Ynew indicates that we observe n new
outcome values at each of the training points xi , i = 1, . . .,
n



Model Complexity

Generalization
Performance

Model Assessment
and Selection

The Bias-Variance
Decomposition

Assessing EPE

Estimation of
In-Sample Error

ISI-BUDS : Lecture 3 17

Assessing EPE

Assessing EPE

I Each of the n components of the in-sample error averages
over the randomness in two distributions

I the randomness in the observed outcomes in the training
data, y

I the randomness in the ‘new’ outcome observation, Y new
i

I The optimism is defined as the expected difference
between the in-sample error and the training error

op ≡ Err − Ey [err]

I expectation is taken with respect to the sampling distribution
based on the training data, y
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Assessing EPE

Assessing EPE

I For squared error loss, a little algebra leads to

op =
2
n

n∑
i=1

Cov[ŷi , yi ]
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Assessing EPE

Assessing EPE

I This definition leads to the relation

Err = Ey [err] +
2
n

n∑
i=1

Cov[ŷi , yi ]

I So, the extent to which err is optimistic, as an estimator of
Err, depends on how strongly yi influences its own
prediction
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Assessing EPE

Assessing EPE

I The expression simplifies if ŷi is linear in the y ’s

ŷi =
n∑

j=1

πjyj

so that

op =
2
n

n∑
i=1

Ey [(ŷi − Ey [ŷi ])(yi − Ey [yi ])]

=
2
n

n∑
i=1

πiVar[yi ]
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Assessing EPE

Assessing EPE

I For example, under the additive error model

Y = f (X ) + ε

with E[ε] = 0 and Var[ε] = σ2, we obtain

Err = Ey [err] +
2
n

pσ2

I p is the number of parameters fit in the regression
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Estimation of in-sample error

Estimation of in-sample error

I While decision theory tells us that EPE is a natural
criterion for model selection, the in-sample error can still
be useful

I having an analytic treatment makes the approach
convenient

I can be effective if we focus on relative differences in error
between model options, rather than the absolute error itself

I From the previous relation, the general form of an
estimator for Err is

Êrr = err + ôp

where ôp is an estimate of the optimism
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Estimation of in-sample error

Mallow’s Cp

I For the linear model, squared error loss leads to Mallow’s
Cp statistic:

Cp = err +
2
n

pσ2

=
1
n
{

RSS + 2pσ̂2}

I The estimate σ̂2 is typically taken from a low-bias model
I the most complex model under consideration

I The Cp statistic penalizes the residual sum of squares by a
factor proportional to the number of parameters being
estimated

I the more complex the model, the greater p will be and the
greater the penalty
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Estimation of in-sample error

Akaike information criterion; AIC

I The Akaike information criterion is a more general
estimate of Err when a log-likelihood function is used as
the loss function

I for a model parameterized by θ, we take

L(Y , fθ(X )) = −2 log Prθ(Y | X )

I sometimes referred to as cross-entropy loss or deviance
I multiplying by -2 and taking the log makes the loss for the

Normal distribution match the squared error loss

I We use this loss function all the time as a means for
choosing the ‘best’ model from our training data

I minimizing the observed loss is maximum likelihood
estimation
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Estimation of in-sample error

Akaike information criterion; AIC

I AIC relies on the following relationship

−2EY
[
log Prθ̂(Y | X )

]
≈ −2

n
Ey [loglike] + 2

p
n

I this relationship holds asymptotically as n→∞
I θ̂ is the maximum likelihood estimate
I ‘loglike’ is the maximized log-likelihood

loglike =
n∑

i=1

log Prθ̂(yi | X )
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Estimation of in-sample error

Akaike information criterion; AIC

I For any general purpose likelihood AIC is defined as

AIC = −2
n

loglike + 2
p
n

I for the Normal model, with σ̂2 known, this is equivalent to Cp

I The penalty imposed by AIC is similar to that imposed by
Cp

I proportional to the number of parameters being estimated

I In more general settings, when the estimator is linear

ŷ = Ly

we can replace p with the effective degrees of freedom
df = tr(L) (eg. penalized regression methods)
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