University of California, Irvine

Model Assessment and Selection for Prediction - Part 2

UC Irvine - ISI BUDS 2023
Ex: King County Birth Weight Data
Best subsets regression
Ridge regression
Simulation study (AIC and BIC)

Presented July 26, 2023

Daniel L. Gillen
Chancellor's Professor and Chair
Department of Statistics
University of California, Irvine

Ex: King County birth weight data

UCIrvine

University of California, Irvine

Model selection and coefficient shrinkage

- In many prediction situations there are a large number of inputs, X
- While it may be the case that $f(X)=X^{\top} \boldsymbol{\beta}$ appropriately describes the underlying mechanisms, it is always the case that we have a finite training sample size, n
- Prediction accuracy:
- least squares estimates may have low bias, but in 'small'-sample settings can exhibit large variability
- we could sacrifice a little bias to reduce variation and achieve better overall predictive accuracy

Ex: King County birth weight data

Model selection and coefficient shrinkage

- Another issue is interpretation:
- with a large number of predictors, it may be hard conceptualize 'holding everything else constant'
- may be desirable to restrict attention to a smaller subset of variables which exhibit the strongest effects

UCIrvine

University of California, Irvine

Ex: King County Birth

 Weight DataBest subsets regression
Ridge regression
Simulation study (AIC and BIC)

Estimation of the extra-sample error

Ex: King County birth weight data

King County birth data

- As an example, let's consider data on child birth weights for children born in King County, WA in 2001
- The dataset contains information on a sample of $n=2,500$ births from 2001
- The data was originally obtained to determine if a new state program ('First Steps') to educate women on proper nutrition during pregnancy was associated with greater birth weight
- The key outcome variable of interest is birth weight
- Birth weight ranges from 255 g to $5,175 \mathrm{~g}$
- 5.1% of babies (127) were born at low birth weight (< 2,500g)
- A total of 15 potential predictor variables are available for investigation

University of California, Irvine

Best subsets regression
Ridge regression
Simulation study (AIC and BIC)

Estimation of the

Ex: King County birth weight data

Complete variable listing

```
"gender"
"plural"
"age"
"race"
"parity"
"married"
"bwt"
"smokeN"
"drinkN"
"firstep"
"welfare"
"smoker"
"drinker"
"wpre"
"wgain"
"education"
"gestation"
```

```
M = male, F = female baby
```

M = male, F = female baby
1 = singleton, 2 = twin, 3 = triplet
1 = singleton, 2 = twin, 3 = triplet
mother's age in years
mother's age in years
race categories (for mother)
race categories (for mother)
number of previous live born infants
number of previous live born infants
Y = yes, N = no
Y = yes, N = no
birth weight in grams
birth weight in grams
number of cigarettes smoked per day during pregnancy
number of cigarettes smoked per day during pregnancy
number of alcoholic drinks per week during pregnancy
number of alcoholic drinks per week during pregnancy
1 = participant in program; 0 = did not participate
1 = participant in program; 0 = did not participate
1 = participant in public assistance program; 0 = did not
1 = participant in public assistance program; 0 = did not
Y = yes, N = no, U = unknown
Y = yes, N = no, U = unknown
Y = yes, N = no, U = unknown
Y = yes, N = no, U = unknown
mother's weight in pounds prior to pregnancy
mother's weight in pounds prior to pregnancy
mother's weight gain in pounds during pregnancy
mother's weight gain in pounds during pregnancy
highest grade completed (add 12 + 1 / year of college)
highest grade completed (add 12 + 1 / year of college)
weeks from last menses to birth of child

```
weeks from last menses to birth of child
```


UCIrvine

University of California, Irvine

Ex: King County Birth Weight Data

Best subsets regression
Ridge regression
Simulation study (AIC and BIC)

Estimation of the extra-sample error

Distribution of birth weights from the King County data

Birth weight, grams

UCIrvine

University of California, Irvine

```
Ex: King County Birth
```

Weight Data
Best subsets regression
Ridge regression
Simulation study (AIC and
BIC)

Estimation of the extra-sample error

Selected scatterplots from the King County data

UCIrvine
 University of California, Irvine

Mother's age, years

Alchoholic drinks per week

Cigarettes smoked per day

Highest grade completed

Weight Data

Best subsets regression
Ridge regression
Simulation study (AIC and BIC)

Estimation of the extra-sample error

Ex: King County birth weight data

Subset selection vs. shrinkage

- Rather than attempting to fit and report a model which includes all the potential predictors, we can consider two strategies
- subset selection
- shrinkage methods

UCIrvine

University of California, Irvine

Ex: King County Birth

 Weight DataBest subsets regression
Ridge regression
Simulation study (AIC and BIC)

Estimation of the extra-sample error

Ex: King County birth weight data

Subset selection

- Here we retain only a subset of variables
- the remaining variables essentially have their β coefficients set to zero
- Various strategies exist for 'choosing' the variables to keep (or throw out)
- best subset selection
- stepwise strategies

UCIrvine

University of California, Irvine

Ex: King County Birth Weight Data

Ex: King County birth weight data

Best subsets regression

- Suppose X consists of p components; X_{1}, \ldots, X_{p}
- For each $k \in\{1, \ldots, p\}$, find the subset of k variables which results in the smallest residual sums of squares
- other criteria include Mallow's C_{p}, R^{2} and adjusted R^{2}
- Can quickly become computationally intensive when p gets large
- In R, code is implemented in the leaps package

Ex: King County birth weight data

Best subsets regression in R

```
library(leaps)
## Model with only the intercept
##
fit0 <- lm(bwt ~ 1, data=weight)
## Perform best subsets analysis
##
## maxModel: a model which includes all the variables you wish to
## entertain
## nvmax: maximum number of variables for the subset selection
## nbest: specify, for any given k, the number of the best models
## are to be returned
# #
maxModel <- as.formula(bwt ~ gender + age + race + parity + married
    + smokeN + drinkN + firststep + welfare
    + smoker + drinker + wpre + education )
```

bestSul <- summary(regsubsets (maxModel, data=weight,
nvmax=17, nbest=10))

UCIrvine

University of California, Irvine

Ex: King County Birth Weight Data
Best subsets regression
Ridge regression
Simulation study (AIC and BIC)

Estimation of the extra-sample error

Ex: King County birth weight data

Best subsets regression in R

```
names (bestSub)
[1] "which" "rsq" "rss" "adjr2" "cp" "bic" 
results <- c(0, sum((weight$bwt- fitted(fit0))^2))
results <- rbind(results,
    cbind(apply(bestSub$which, 1, sum)-1, bestSub$rss))
##
##### Look at minimum residual sums of squares
##
minRSS <- tapply(results[,2], results[,1], FUN=min)
```


UCIrvine

University of California, Irvine

Ex: King County Birth Weight Data
Best subsets regression
Ridge regression
Simulation study (AIC and BIC)

Estimation of the extra-sample error Cross-validation

Bootstrap methods
Summary

Best subset selection for the King County 2001 birth weight data

UCIrvine

University of California, Irvine

Ex: King County Birth Weight Data
Best subsets regression
Ridge regression
Simulation study (AIC and BIC)

Estimation of the extra-sample error Cross-validation

Bootstrap methods

Ex: King County birth weight data

Best subsets regression

- The best-subset curve is necessarily decreasing, so it cannot be used as a criteria for choosing k
- Typically choose a model which minimizes an estimate of the EPE
- Mallow's C_{p}, AIC, BIC, cross-validation

UCIrvine

University of California, Irvine

Ex: King County Birth Weight Data

Ex: King County birth weight data

Best subsets regression in R

```
##
#####
##### Now let's do best subsets with Cp as the criteria
#####
##
bestSubCp <- leaps(x=model.matrix(fitF),
    y=weight$bwt, int=FALSE,
    nbest=1, method="Cp")
## 'results' contains the subset size, k, and the Cp value
##
results <- NULL
results <- rbind(results, cbind(apply(bestSubCp$which, 1, sum)-1,
                                    bestSubCp$Cp))
##
minCp<- tapply(results[,2], results[,1], FUN=min)
```


UCIrvine

University of California, Irvine

Ex: King County Birth Weight Data
Best subsets regression
Ridge regression
Simulation study (AIC and BIC)

Estimation of the extra-sample error Cross-validation

Bootstrap methods
Summary

Best subset selection for the King County 2001 birth weight data

UCIrvine

University of California, Irvine

Ex: King County Birth Weight Data
Best subsets regression
Ridge regression
Simulation study (AIC and BIC)

Estimation of the extra-sample error

Ex: King County birth weight data

Best subsets regression in R

```
##
#####
##### Compare which were selected in the k=10 models...
#####
##
> cbind( dimnames( model.matrix(fitF) )[[2]],
    bestSubCp$which[11,],
    bestSubRSS$which[11,] )
\begin{tabular}{|c|c|c|c|}
\hline & [,1] & [,2] & [,3] \\
\hline 1 & "(Intercept)" & "TRUE" & "TRUE" \\
\hline 2 & "genderM" & "TRUE" & "TRUE" \\
\hline 3 & "age" & "FALSE" & "FALSE" \\
\hline 4 & "raceblack" & "FALSE" & "FALSE" \\
\hline 5 & "racehispanic" & "TRUE" & "TRUE" \\
\hline 6 & "raceother" & "FALSE" & "TRUE" \\
\hline 7 & "racewhite" & "TRUE" & "TRUE" \\
\hline 8 & "parity" & "TRUE" & "TRUE" \\
\hline 9 & "married" & "TRUE" & "TRUE" \\
\hline A & "smoken" & "TRUE" & "TRUE" \\
\hline B & "drinkN" & "FALSE" & "FALSE" \\
\hline C & "firststep" & "FALSE" & "FALSE" \\
\hline D & "welfare" & "TRUE" & "TRUE" \\
\hline E & "smokerY" & "TRUE" & "TRUE" \\
\hline F & "drinkerY" & "FALSE" & "FALSE" \\
\hline G & "wpre" & "TRUE" & "TRUE" \\
\hline & "education" & "TRUE" & "TRUE" \\
\hline
\end{tabular}
```


Ex: King County birth weight data

Stepwise procedures

- Instead of performing an exhaustive enumeration for each value for k, we can search for a 'good path'
- Forward selection
- start with an 'intercept-only' model and build up the model
- Backward selection
- start with a 'full' model and reduce the model
- In R, see stepAIC in the MASS library

UCIrvine

University of California, Irvine

Ex: King County Birth Weight Data

Ex: King County birth weight data

Stepwise AIC in R

```
library(MASS)
```

\#\#
\#\#\#\#\#
\#\#\#\#\# Stepwise selection using AIC
\#\#\#\#\#
\#\#
fitStepAIC <- stepAIC(fit0, scope=maxModel, direction="forward")
\cdot
>Step: AIC=31425
bwt ~ wpre + smoker + gender + married + race + parity + welfare +
education + smokeN

	Df	Sum of Sq	RSS	AIC
<none>				$7.12 \mathrm{e}+08$
$.14 \mathrm{e}+04$				
+ drinker	1	$1.96 \mathrm{e}+05$	$7.12 \mathrm{e}+08$	$3.14 \mathrm{e}+04$
+ drinkN	1	$4.37 \mathrm{e}+04$	$7.12 \mathrm{e}+08$	$3.14 \mathrm{e}+04$
+ firststep	1	$2.41 \mathrm{e}+04$	$7.12 \mathrm{e}+08$	$3.14 \mathrm{e}+04$
+ age	1	$1.88 \mathrm{e}+04$	$7.12 \mathrm{e}+08$	$3.14 \mathrm{e}+04$

Weight Data
Best subsets regression
Ridge regression
Simulation study (AIC and BIC)

Estimation of the extra-sample error Cross-validation

Bootstrap methods
Summary

Ex: King County birth weight data

Shrinkage methods

- Rather retaining some variables and discarding the rest, an alternative is to keep all the variables but impose restrictions on the size of the coefficients
- the point esitmates for $\boldsymbol{\beta}$ are subject to bias
- results often don't suffer as much in terms of variability
- Ridge regression imposes an L_{2}-type penalty
- the solution is give by

$$
\hat{\boldsymbol{\beta}}^{\text {ridge }}=\operatorname{argmin}_{\boldsymbol{\beta}} \operatorname{RSS}(\boldsymbol{\beta})
$$

subject to the constraint:

$$
\sum_{j=1}^{p} \beta_{j}^{2} \leq s
$$

- value of s influences how large the components of $\boldsymbol{\beta}$ can get

Ex: King County birth weight data

Shrinkage methods

- An alternative way of writing the problem is

$$
\hat{\boldsymbol{\beta}}^{\text {ridge }}=\operatorname{argmin}_{\boldsymbol{\beta}}\left\{\operatorname{RSS}(\boldsymbol{\beta})+\lambda \sum_{j=1}^{p} \beta_{j}^{2}\right\}
$$

- Here, $\lambda \geq 0$ controls the amount of shrinkage
- when $\lambda=0$, we are performing ordinary least squares estimation
- for large λ, minimizing the penalized RSS requires the components of β to be small
- there is a one-to-one relationship between λ and s
- Minimization yields the solution

$$
\hat{\boldsymbol{\beta}}^{\text {ridge }}=\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

- Could allow λ to be a vector, and ensure no shrinkage among certain coefficients

University of California, Irvine

Ex: King County birth weight data

Shrinkage methods

- The solution is linear, and we can therefore obtain the effective degrees of freedom as

$$
\operatorname{df}(\lambda)=\operatorname{tr}\left\{\mathbf{X}\left(\mathbf{X}^{\top} \mathbf{X}+\lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\top}\right\}
$$

- depends on the complexity/smoothing parameter λ
- Ridge regression for the linear model is implemented in R

```
library(MASS)
ridgeFit <- lm.ridge(maxModel, data=weight,
    lambda=c(0, 100, 1000, 10000))
```


UCIrvine

University of California, Irvine

Ex: King County Birth

 Weight DataRidge regression for the King County Birth data
Ridge regression coefficient estimates

Ex: King County Birth Weight Data
Best subsets regression
Ridge regression
Simulation study (AIC and BIC)

Estimation of the extra-sample error

Ex: King County birth weight data

Ridge regression results for King County data

- Relationship between λ and $\operatorname{df}(\lambda)$ is non-linear
- For these data, there is a dramatic reduction in 'complexity' of the model up to about $\lambda=1,000$

UCIrvine

University of California, Irvine

Ex: King County Birth Weight Data
Best subsets regression
Ridge regression
Simulation study (AIC and BIC)

Ridge regression for the King County Birth data
Smoothing parameter vs. effective degrees of freedom

UCIrvine
 University of California, Irvine

Ex: King County Birth Weight Data
Best subsets regression
Ridge regression
Simulation study (AIC and BIC)

Estimation of the extra-sample error
Cross-validation
Bootstrap methods
Summary

Ridge regression for the King County Birth data

Ridge regression coefficient estimates

UCIrvine

University of California, Irvine

Ex: King County Birth Weight Data
Best subsets regression
Ridge regression
Simulation study (AIC and BIC)

Estimation of the extra-sample error
Cross-validation
Bootstrap methods

Model selection for 'complexity'

AIC vs. BIC

- Up to a constant of proportionality, AIC and BIC differ in terms of the penalty imposed on increasing complexity

$$
\begin{aligned}
& \mathrm{AIC} \Rightarrow 2 p \\
& \mathrm{BIC} \Rightarrow(\log n) p
\end{aligned}
$$

- for reasonable sample sizes, BIC imposes a heavier penalty
- Unfortunately, in practice, there isn't a clear choice between the two
- We can investigate their relative merits using the King county birth weight data
- consider determining the value of λ in a ridge regression analysis which includes all 13 predictors

University of California, Irvine

AIC and BIC for a ridge regression analysis of the King county birth weight data

UCIrvine
 University of California, Irvine

Ex: King County Birth Weight Data
Best subsets regression
Ridge regression
Simulation study (AIC and BIC)

Estimation of the extra-sample error Cross-validation

Bootstrap methods

Model selection for 'complexity’

AIC vs. BIC

- It seems that both AIC and BIC choose the optimal value of λ to be zero
- degrees of freedom = 17
- They both favor the most complex models
- neither penalty seems to offset the reduction in RSS by increasing the complexity of the model
- Even though we are estimating 17 parameters with 2500 observations, seems that there should still be room for improvement in the model...

University of California, Irvine

Ex: King County Birth

 Weight Data
Estimation of the extra-sample error

Extra-sample error

- While AIC and BIC permit an analytic treatment of assessing the predictive ability of a given model, their focus on the in-sample error, Err, is somewhat of a drawback
- Here we return to estimation of the extra-sample error,

$$
\mathrm{EPE}=\mathrm{E}_{X, Y}[L(Y, \hat{f}(X))],
$$

interpreted as the generalization error when the prediction rule $\hat{f}(\cdot)$ is applied to an independent test sample, from the joint distribution of X and Y

- Both approaches we consider here involve the clever use and re-use of the training data

Cross-validation

Cross-validation

- One possibility for choosing λ could be to attempt to to minimize the observed mean squared error:

$$
\text { err }=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

- However, this is typically a poor estimate of mean squared prediction error (or out-of-sample prediction error)
- One aspect of the problem is that the estimate $\hat{y}_{i}=\hat{f}\left(x_{i}\right)$ uses the observed outcome y_{i}, as well as the others, to predict y_{i}
- One solution to this would be to predict y_{i} using all the observations except the $i^{\text {th }}$ case Weight Data

Ex: King County Birth

Cross-validation

Cross-validation

- If we denote the resulting prediction as $\hat{y}_{(i)}$, then the corresponding sum of squared residuals is referred to as the predicted residual sum of squares

$$
\text { PRESS }=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{(i)}\right)^{2}
$$

- PRESS is also referred to as the cross-validation statistic
- leave-one-out cross-validation
- denote with CV
- In general situation the computational burden can be substantial
- requires n fits of the model

University of California, Irvine

Cross-validation

Cross-validation

- However, calculation of the CV statistic is fairly straightforward for linear models
- leave-one-out, or deleted, residuals are obtained from the residuals of the model based on all the data as well as the hat matrix, \mathbf{H}

$$
y_{i}-\hat{y}_{(i)}=\frac{y_{i}-\hat{y}_{i}}{1-H_{i i}}
$$

where $H_{i j}$ denote the $i^{\text {th }}$ diagonal element of \mathbf{H}

- We therefore have

$$
\mathrm{CV}=\frac{1}{n} \sum_{i=1}^{n}\left[\frac{y_{i}-\hat{y}_{i}}{1-H_{i i}}\right]^{2}
$$

Cross-validation

Generalized cross-validation

- The generalized cross-validation statistic arises when we approximate the $H_{i i}$ by their average

$$
\mathrm{GCV}=\frac{1}{n} \sum_{i=1}^{n}\left[\frac{y_{i}-\hat{y}_{i}}{1-\operatorname{trace}(\mathbf{H}) / n}\right]^{2}
$$

- For the case of penalized regression, we replace trace(H) with the effective degrees of freedom

UCIrvine

University of California, Irvine

Ex: King County Birth

 Weight DataBest subsets regression
Ridge regression
Simulation study (AIC and

Cross-validation

K-fold cross-validation

- Leave-one-out cross-validation involves splitting the data into n parts
- The approach can be generalized somewhat by splitting the data into $K<n$ parts as follows
(1) Split the data into K roughly equal parts, and denote the collection of indexes for the $k^{\text {th }}$ part as $C_{k}, k=1, \ldots, K$
(2) For each part, fit a model using all the remaining data,

$$
\mathbf{y}^{(k)}=\left\{y_{i} \mid i \notin C_{k}\right\},
$$

and denote the fitted model as $\hat{f}^{k}(x)$
(3) For all i such that $i \in C_{k}$, obtain a prediction via

$$
\hat{y}_{i}=\hat{f}^{k}\left(x_{i}\right)
$$

Cross-validation

K-fold cross-validation

- Let $k(i)$ denote the part in which y_{i} resides
- The K-fold cross validation statistic, for a general loss function, is given by

$$
\mathrm{CV}_{K}=\frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, \hat{f}^{-k(i)}\left(x_{i}\right)\right)
$$

where L denotes a loss function. (We have been considering squared error loss so that

$$
L\left(y_{i}, \hat{f}^{-k(i)}\left(x_{i}\right)\right)=\left(y_{i}-\hat{f}^{-k(i)}\left(x_{i}\right)\right)^{2}
$$

- As we decrease K, however, the bias of CV_{K} as an estimate of MS[P]E increases
- CV_{K} is biased upward
- extent depends on the sample size

Cross-validation

Cross-validation for ridge regression

- The select () in the MASS library minimizes the generalized cross validation statistic for ridge regression
- Let's compare the complexity of the model when GCV is used as opposed to AIC and BIC

```
##
#####
##### How does AIC/BIC compare with GCV???
#####
##
maxLambda <- 25000
lambdaVal <- seq(from=0, to=maxLambda, length=100)
select(lm.ridge(maxModel, data=weight, lambda=lambdaVal))
Xmat <- model.matrix(lm(maxModel, data=weight))
calcDF(Xmat, lambda=252.53)
> [1] 9.3619
```

So, the effective degrees of freedom using cross validation are 9.36, as compared to 17 for AIC and BIC

UCIrvine

University of California, Irvine

Ex: King County Birth Weight Data
Best subsets regression
Ridge regression
Simulation study (AIC and BIC)

Estimation of the extra-sample error

Bootstrap methods

Bootstrap estimates of prediction error

- Let $\hat{f}^{b}(\cdot)$ denote the estimate of $f(\cdot)$ obtained from the $b^{\text {th }}$ bootstrap replicate, $b=1, \ldots, B$
- For each fit, keep a track of how well it predicts the original training data
- evaluate the training error for each fit
- We could average across the B replicates to get an estimate of EPE

$$
\widehat{\mathrm{EPE}}_{\mathrm{boot}}=\frac{1}{B} \sum_{b=1}^{B}\left[\frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, \hat{f}^{b}\left(x_{i}\right)\right)\right]
$$

Bootstrap methods

Leave-one-out bootstrap

- Typically $\widehat{\mathrm{EPE}}_{\text {boot }}$ is not a good estimate of EPE since there is too much overlap between the bootstrap samples (which act as training data) and the training data (which acts as the test data)
- Cross-validation worked by averaging across replications where the training (sub-)data and test (sub-)data were explicitly separated
- We could mimic this by only evaluating the predictions for the $i^{\text {th }}$ observation from bootstrap datasets in which it was not sampled

University of California, Irvine

Bootstrap methods

Leave-one-out bootstrap

- The leave-one-out bootstrap is defined by

$$
\widehat{\mathrm{EPE}}^{(1)}=\frac{1}{n} \sum_{i=1}^{n}\left[\frac{1}{\left|C_{i}\right|} \sum_{b \in C_{i}} L\left(y_{i}, \hat{f}^{b}\left(x_{i}\right)\right)\right]
$$

- the set C_{i} denotes the indices of the bootstrap samples b that do not contain observation i
- $\left|C_{i}\right|$ is the number of such samples

Bootstrap methods

UCIrvine

University of California, Irvine

. 632 bootstrap estimator

- While the leave-one-out bootstrap estimator resolves the overfitting associated with $\widehat{E P E}_{\text {boot }}$, it can suffer in terms of bias analogous to that suffered by K-fold cross-validation when $K>1$
- The average number of distinct observations in each bootstrap sample is $0.632 n$

$$
\begin{aligned}
\operatorname{Pr}(\text { observation } i \in \text { bootstrap sample } b) & =1-\left(1-\frac{1}{n}\right)^{n} \\
& \approx 1-e^{-1} \\
& =0.632
\end{aligned}
$$

- so $\widehat{\mathrm{EPE}}^{(1)}$ behaves roughly in the same way as two-fold cross-validation

Bootstrap methods

. 632 bootstrap estimator

- The '. 632 estimator' is design to alleviate the 'training-set-size' bias, and is defined by

$$
\widehat{\mathrm{EPE}}^{(.632)}=0.368 \mathrm{err}+0.632 \widehat{\mathrm{EPE}}^{(1)}
$$

- intuitively, the estimator pulls the leave-one-out bootstrap estimator down towards the training error rate, and hence reduces its upward bias

UCIrvine

University of California, Irvine

Ex: King County Birth Weight Data
Best subsets regression
Ridge regression
Simulation study (AIC and BIC)

Estimation of the extra-sample error

Ex: King County birth weight data

Computation of prediction criteria for ridge regression models

- The function ridge.predcrit() on the course webpage will compute all of our commonly used estimates of prediction error for ridge regression models...

```
> set.seed(12345)
> source( "http://www.ics.uci.edu/~dgillen/
            Stat211/Code/ridgePredCrit.q" )
> maxModel <- as.formula(bwt ~ gender + age + race + parity +
    married + smokeN + drinkN +
    firststep + welfare + smoker +
    drinker + wpre + education)
> ridgeFit <- lm.ridge(maxModel, data=weight, lambda=252.53)
> ridge.predcrit( ridgeFit, formula=maxModel, data=weight,
                            K=10, B=500, boot=TRUE, sigmaSq="calculate" )
    df mse aic bic cv bs.mse bs.lout bs.632
9.3619 284974 38514 38568 287171 286657 290600 289149
```


UCIrvine

University of California, Irvine

Ex: King County Birth Weight Data
Best subsets regression Ridge regression Simulation study (AIC and BIC)

Estimation of the extra-sample error

Obtaining prediction criteria for an OLS fit in \mathbf{R}

Obtaining prediction criteria for an OLS fit in \mathbf{R}

- Similarly, the function lm. predcrit () will compute all of our commonly used estimates of prediction error for a standard OLS regression model...

```
##
```


Fit a standard liner regression model adjusting for

Fit a standard liner regression model adjusting for

wpre, age, gender, and smokeN

wpre, age, gender, and smokeN

 > fit.lm <- lm(bwt ~ wpre + age + gender + smokeN, data=weight)
 > fit.lm <- lm(bwt ~ wpre + age + gender + smokeN, data=weight)
 > lm.predcrit(fit.lm, data=weight, K=10, boot=TRUE, B=100)
 > lm.predcrit(fit.lm, data=weight, K=10, boot=TRUE, B=100)
 df mse Cp aic bic cv cv.k bs.mse bs.1out bs.632
 df mse Cp aic bic cv cv.k bs.mse bs.1out bs.632
 5 291265 292432 38560 38589 292487 292512 291927 293132 292689
 5 291265 292432 38560 38589 292487 292512 291927 293132 292689


```
##
```

 (

UCIrvine

University of California, Irvine

Ex: King County Birth Weight Data

Best subsets regression
Ridge regression
Simulation study (AIC and BIC)

Estimation of the extra-sample error

Summary

Criteria to assess predictive accuracy

- Decision theoretic approach
- We measure errors between Y and $\hat{f}(X)$ by specifying a loss function $L(Y, \hat{f}(X))$
- The test or generalization error is the expected prediction error over an independent test sample

$$
\mathrm{EPE}=\mathrm{E}_{X, Y}[L(Y, \hat{f}(X))]
$$

- the expectation is taken over the joint distribution of X and Y
- the average error, were the prediction model to be applied to an independent sample from the population
unvityot

Ex: King County Birth Weight Data
Best subsets regression

Criteria

Possibilities for estimating EPE

- Might consider training error

$$
\text { err }=\frac{1}{n} \sum_{i=1}^{n} L\left(y_{i}, \hat{f}\left(x_{i}\right)\right)
$$

- Negatively biased....Overly optimistic
- Analytically, focus on in-sample error

$$
\operatorname{Err}=\frac{1}{n} \sum_{i=1}^{n} \mathrm{E}_{y}\left[\mathrm{E}_{y} \text { new }\left[L\left(Y_{i}^{\text {new }}, \hat{f}\left(x_{i}\right)\right]\right]\right.
$$

Criteria

Possibilities for estimating ERR

- AIC
- Consider (-2 times) the log-likelihood to be a loss function

$$
\text { AIC }=-\frac{2}{n} \log l i k e+2 \frac{p}{n}
$$

- BIC
- Motivated by the Bayes factor in model selection

$$
\operatorname{Pr}\left(\text { Data } \mid \mathcal{M}_{m}\right) \approx \log \operatorname{Pr}\left(\text { Data } \mid \mathcal{M}_{m}, \hat{\theta}_{m}\right)-(\log n) \frac{p_{m}}{2}
$$

- Computed in practice as

$$
\text { BIC }=-2 \log l i k e+(\log n) p
$$

Criteria

Resampling estimates EPE

- Using resampling to change the support of the observed predictors...
- General strategies that can be applied to any estimation technique (some quicker than others!)
- Cross-validation
- Focus on the predicted residual sum of squares

$$
\text { PRESS }=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{(i)}\right)^{2}
$$

- Easily computed for OLS fits
- Can be computationally intensive for more complicated regression models
- In this case, could focus on K-fold cross-validation

Criteria

Resampling estimates EPE

- Bootstrapping
- Basic bootstrap is biased downards
- Leave-one-out bootstrap is generally biased upwards
- Compromise is the . 632 bootstrap

$$
\widehat{\mathrm{EPE}}^{(.632)}=0.368 \mathrm{err}+0.632 \widehat{\mathrm{EPE}}^{(1)}
$$

UCIrvine
 University of California, Irvine

Ex: King County Birth Weight Data
Best subsets regression
Ridge regression
Simulation study (AIC and BIC)

Estimation of the extra-sample error

