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Ex: King County birth weight data

Model selection and coefficient shrinkage

I In many prediction situations there are a large number of
inputs, X

I While it may be the case that f (X ) = X Tβ appropriately
describes the underlying mechanisms, it is always the
case that we have a finite training sample size, n

I Prediction accuracy:
I least squares estimates may have low bias, but in

‘small’-sample settings can exhibit large variability
I we could sacrifice a little bias to reduce variation and

achieve better overall predictive accuracy
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Ex: King County birth weight data

Model selection and coefficient shrinkage

I Another issue is interpretation:

I with a large number of predictors, it may be hard
conceptualize ‘holding everything else constant’

I may be desirable to restrict attention to a smaller subset of
variables which exhibit the strongest effects
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Ex: King County birth weight data

King County birth data

I As an example, let’s consider data on child birth weights
for children born in King County, WA in 2001

I The dataset contains information on a sample of n=2,500
births from 2001

I The data was originally obtained to determine if a new
state program (‘First Steps’) to educate women on proper
nutrition during pregnancy was associated with greater
birth weight

I The key outcome variable of interest is birth weight
I Birth weight ranges from 255g to 5,175g
I 5.1% of babies (127) were born at low birth weight (<

2,500g)

I A total of 15 potential predictor variables are available for
investigation
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Ex: King County birth weight data

Complete variable listing
"gender" M = male, F = female baby
"plural" 1 = singleton, 2 = twin, 3 = triplet
"age" mother’s age in years
"race" race categories (for mother)
"parity" number of previous live born infants
"married" Y = yes, N = no
"bwt" birth weight in grams
"smokeN" number of cigarettes smoked per day during pregnancy
"drinkN" number of alcoholic drinks per week during pregnancy
"firstep" 1 = participant in program; 0 = did not participate
"welfare" 1 = participant in public assistance program; 0 = did not
"smoker" Y = yes, N = no, U = unknown
"drinker" Y = yes, N = no, U = unknown
"wpre" mother’s weight in pounds prior to pregnancy
"wgain" mother’s weight gain in pounds during pregnancy
"education" highest grade completed (add 12 + 1 / year of college)
"gestation" weeks from last menses to birth of child
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Distribution of birth weights from the King County data

0 1000 2000 3000 4000 5000

Birth weight, grams
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Selected scatterplots from the King County data
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ISI-BUDS : Lecture 3 8

Ex: King County birth weight data

Subset selection vs. shrinkage

I Rather than attempting to fit and report a model which
includes all the potential predictors, we can consider two
strategies

I subset selection
I shrinkage methods
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Ex: King County birth weight data

Subset selection

I Here we retain only a subset of variables
I the remaining variables essentially have their β coefficients

set to zero

I Various strategies exist for ‘choosing’ the variables to keep
(or throw out)

I best subset selection
I stepwise strategies
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Ex: King County birth weight data

Best subsets regression

I Suppose X consists of p components; X1, . . . ,Xp

I For each k ∈ {1, . . . ,p}, find the subset of k variables
which results in the smallest residual sums of squares

I other criteria include Mallow’s Cp, R2 and adjusted R2

I Can quickly become computationally intensive when p
gets large

I In R, code is implemented in the leaps package
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Ex: King County birth weight data

Best subsets regression in R
library(leaps)

## Model with only the intercept
##
fit0 <- lm(bwt ~ 1, data=weight)

## Perform best subsets analysis
##
## maxModel: a model which includes all the variables you wish to
## entertain
## nvmax: maximum number of variables for the subset selection
## nbest: specify, for any given k, the number of the best models
## are to be returned
##
maxModel <- as.formula(bwt ~ gender + age + race + parity + married

+ smokeN + drinkN + firststep + welfare
+ smoker + drinker + wpre + education )

bestSub <- summary(regsubsets(maxModel, data=weight,
nvmax=17, nbest=10))
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Ex: King County birth weight data

Best subsets regression in R
names(bestSub)
[1] "which" "rsq" "rss" "adjr2" "cp" "bic"

"outmat" "obj"

## ’results’ contains the subset size, k, and the residual
## sum of squares

results <- c(0, sum((weight$bwt- fitted(fit0))^2))
results <- rbind(results,

cbind(apply(bestSub$which, 1, sum)-1, bestSub$rss))

##
##### Look at minimum residual sums of squares
##
minRSS <- tapply(results[,2], results[,1], FUN=min)
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Best subset selection for the King County 2001 birth weight
data
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Ex: King County birth weight data

Best subsets regression

I The best-subset curve is necessarily decreasing, so it
cannot be used as a criteria for choosing k

I Typically choose a model which minimizes an estimate of
the EPE

I Mallow’s Cp, AIC, BIC, cross-validation
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Ex: King County birth weight data

Best subsets regression in R
##
#####
##### Now let’s do best subsets with Cp as the criteria
#####
##
bestSubCp <- leaps(x=model.matrix(fitF),

y=weight$bwt, int=FALSE,
nbest=1, method="Cp")

## ’results’ contains the subset size, k, and the Cp value
##
results <- NULL
results <- rbind(results, cbind(apply(bestSubCp$which, 1, sum)-1,

bestSubCp$Cp))

##
minCp<- tapply(results[,2], results[,1], FUN=min)
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Best subset selection for the King County 2001 birth weight
data
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Ex: King County birth weight data

Best subsets regression in R
##
#####
##### Compare which were selected in the k=10 models...
#####
##
> cbind( dimnames( model.matrix(fitF) )[[2]],

bestSubCp$which[11,],
bestSubRSS$which[11,] )

[,1] [,2] [,3]
1 "(Intercept)" "TRUE" "TRUE"
2 "genderM" "TRUE" "TRUE"
3 "age" "FALSE" "FALSE"
4 "raceblack" "FALSE" "FALSE"
5 "racehispanic" "TRUE" "TRUE"
6 "raceother" "FALSE" "TRUE"
7 "racewhite" "TRUE" "TRUE"
8 "parity" "TRUE" "TRUE"
9 "married" "TRUE" "TRUE"
A "smokeN" "TRUE" "TRUE"
B "drinkN" "FALSE" "FALSE"
C "firststep" "FALSE" "FALSE"
D "welfare" "TRUE" "TRUE"
E "smokerY" "TRUE" "TRUE"
F "drinkerY" "FALSE" "FALSE"
G "wpre" "TRUE" "TRUE"
H "education" "TRUE" "TRUE"
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Ex: King County birth weight data

Stepwise procedures

I Instead of performing an exhaustive enumeration for each
value for k , we can search for a ‘good path’

I Forward selection
I start with an ‘intercept-only’ model and build up the model

I Backward selection
I start with a ‘full’ model and reduce the model

I In R, see stepAIC in the MASS library
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Ex: King County birth weight data

Stepwise AIC in R
library(MASS)
##
#####
##### Stepwise selection using AIC
#####
##
fitStepAIC <- stepAIC( fit0, scope=maxModel, direction="forward" )
.
.
.
>Step: AIC=31425
bwt ~ wpre + smoker + gender + married + race + parity + welfare +

education + smokeN

Df Sum of Sq RSS AIC
<none> 7.12e+08 3.14e+04
+ drinker 1 1.96e+05 7.12e+08 3.14e+04
+ drinkN 1 4.37e+04 7.12e+08 3.14e+04
+ firststep 1 2.41e+04 7.12e+08 3.14e+04
+ age 1 1.88e+04 7.12e+08 3.14e+04
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Ex: King County birth weight data

Shrinkage methods

I Rather retaining some variables and discarding the rest,
an alternative is to keep all the variables but impose
restrictions on the size of the coefficients

I the point esitmates for β are subject to bias
I results often don’t suffer as much in terms of variability

I Ridge regression imposes an L2-type penalty
I the solution is give by

β̂
ridge

= argminβ RSS(β)

subject to the constraint:

p∑
j=1

β2
j ≤ s

I value of s influences how large the components of β can get
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Ex: King County birth weight data

Shrinkage methods

I An alternative way of writing the problem is

β̂
ridge

= argminβ

RSS(β) + λ

p∑
j=1

β2
j


I Here, λ ≥ 0 controls the amount of shrinkage

I when λ = 0, we are performing ordinary least squares
estimation

I for large λ, minimizing the penalized RSS requires the
components of β to be small

I there is a one-to-one relationship between λ and s

I Minimization yields the solution

β̂
ridge

= (XT X + λI)−1XT y

I Could allow λ to be a vector, and ensure no shrinkage
among certain coefficients
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Ex: King County birth weight data

Shrinkage methods

I The solution is linear, and we can therefore obtain the
effective degrees of freedom as

df(λ) = tr{X(XT X + λI)−1XT}

I depends on the complexity/smoothing parameter λ

I Ridge regression for the linear model is implemented in R

library(MASS)

ridgeFit <- lm.ridge(maxModel, data=weight,
lambda=c(0, 100, 1000, 10000))
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Ridge regression for the King County Birth data

Smoothing parameter, λλ

Ridge regression coefficient estimates
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Ex: King County birth weight data

Ridge regression results for King County data

I Relationship between λ and df(λ) is non-linear

I For these data, there is a dramatic reduction in
‘complexity’ of the model up to about λ = 1,000
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Ridge regression for the King County Birth data

Smoothing parameter, λλ
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Ridge regression for the King County Birth data

Effective degrees of freedom, d(λλ)

Ridge regression coefficient estimates
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Model selection for ‘complexity’

AIC vs. BIC

I Up to a constant of proportionality, AIC and BIC differ in
terms of the penalty imposed on increasing complexity

AIC ⇒ 2p
BIC ⇒ (log n)p

I for reasonable sample sizes, BIC imposes a heavier penalty

I Unfortunately, in practice, there isn’t a clear choice
between the two

I We can investigate their relative merits using the King
county birth weight data

I consider determining the value of λ in a ridge regression
analysis which includes all 13 predictors
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AIC and BIC for a ridge regression analysis of the King
county birth weight data
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Model selection for ‘complexity’

AIC vs. BIC

I It seems that both AIC and BIC choose the optimal value
of λ to be zero

I degrees of freedom = 17

I They both favor the most complex models

I neither penalty seems to offset the reduction in RSS by
increasing the complexity of the model

I Even though we are estimating 17 parameters with 2500
observations, seems that there should still be room for
improvement in the model...
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Estimation of the extra-sample error

Extra-sample error

I While AIC and BIC permit an analytic treatment of
assessing the predictive ability of a given model, their
focus on the in-sample error, Err, is somewhat of a
drawback

I Here we return to estimation of the extra-sample error,

EPE = EX ,Y

[
L(Y , f̂ (X ))

]
,

interpreted as the generalization error when the prediction
rule f̂ (·) is applied to an independent test sample, from the
joint distribution of X and Y

I Both approaches we consider here involve the clever use
and re-use of the training data
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Cross-validation

Cross-validation

I One possibility for choosing λ could be to attempt to to
minimize the observed mean squared error:

err =
1
n

n∑
i=1

(yi − ŷi)
2

I However, this is typically a poor estimate of mean squared
prediction error (or out-of-sample prediction error)

I One aspect of the problem is that the estimate ŷi = f̂ (xi)
uses the observed outcome yi , as well as the others, to
predict yi

I One solution to this would be to predict yi using all the
observations except the i th case
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Cross-validation

Cross-validation

I If we denote the resulting prediction as ŷ(i), then the
corresponding sum of squared residuals is referred to as
the predicted residual sum of squares

PRESS =
n∑

i=1

(
yi − ŷ(i)

)2

I PRESS is also referred to as the cross-validation statistic
I leave-one-out cross-validation
I denote with CV

I In general situation the computational burden can be
substantial

I requires n fits of the model
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Cross-validation

Cross-validation

I However, calculation of the CV statistic is fairly
straightforward for linear models

I leave-one-out, or deleted, residuals are obtained from the
residuals of the model based on all the data as well as the
hat matrix, H

yi − ŷ(i) =
yi − ŷi

1− Hii

where Hii denote the i th diagonal element of H

I We therefore have

CV =
1
n

n∑
i=1

[
yi − ŷi

1− Hii

]2
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Cross-validation

Generalized cross-validation

I The generalized cross-validation statistic arises when we
approximate the Hii by their average

GCV =
1
n

n∑
i=1

[
yi − ŷi

1− trace(H)/n

]2

I For the case of penalized regression, we replace trace(H)
with the effective degrees of freedom
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Cross-validation

K-fold cross-validation

I Leave-one-out cross-validation involves splitting the data
into n parts

I The approach can be generalized somewhat by splitting
the data into K < n parts as follows

(1) Split the data into K roughly equal parts, and denote the
collection of indexes for the k th part as Ck , k = 1, . . . ,K

(2) For each part, fit a model using all the remaining data,

y(k) = {yi | i /∈ Ck},

and denote the fitted model as f̂ k (x)

(3) For all i such that i ∈ Ck , obtain a prediction via

ŷi = f̂ k (xi)
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Cross-validation

K-fold cross-validation

I Let k(i) denote the part in which yi resides

I The K -fold cross validation statistic, for a general loss
function, is given by

CVK =
1
n

n∑
i=1

L(yi , f̂−k(i)(xi))

where L denotes a loss function. (We have been
considering squared error loss so that

L(yi , f̂−k(i)(xi)) = (yi − f̂−k(i)(xi))
2

I As we decrease K , however, the bias of CVK as an
estimate of MS[P]E increases

I CVK is biased upward
I extent depends on the sample size
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Cross-validation

Cross-validation for ridge regression

I The select() in the MASS library minimizes the
generalized cross validation statistic for ridge regression

I Let’s compare the complexity of the model when GCV is
used as opposed to AIC and BIC

##
#####
##### How does AIC/BIC compare with GCV???
#####
##
maxLambda <- 25000
lambdaVal <- seq(from=0, to=maxLambda, length=100)
select(lm.ridge(maxModel, data=weight, lambda=lambdaVal))
Xmat <- model.matrix(lm(maxModel, data=weight))

calcDF(Xmat, lambda=252.53)
> [1] 9.3619

So, the effective degrees of freedom using cross validation are
9.36, as compared to 17 for AIC and BIC
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Bootstrap methods

Bootstrap estimates of prediction error

I Let f̂ b(·) denote the estimate of f (·) obtained from the bth

bootstrap replicate, b = 1, . . . ,B

I For each fit, keep a track of how well it predicts the original
training data

I evaluate the training error for each fit

I We could average across the B replicates to get an
estimate of EPE

ÊPEboot =
1
B

B∑
b=1

[
1
n

n∑
i=1

L(yi , f̂ b(xi))

]
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Bootstrap methods

Leave-one-out bootstrap

I Typically ÊPEboot is not a good estimate of EPE since
there is too much overlap between the bootstrap samples
(which act as training data) and the training data (which
acts as the test data)

I Cross-validation worked by averaging across replications
where the training (sub-)data and test (sub-)data were
explicitly separated

I We could mimic this by only evaluating the predictions for
the i th observation from bootstrap datasets in which it was
not sampled
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Bootstrap methods

Leave-one-out bootstrap

I The leave-one-out bootstrap is defined by

ÊPE
(1)

=
1
n

n∑
i=1

 1
|Ci |

∑
b∈Ci

L(yi , f̂ b(xi))



I the set Ci denotes the indices of the bootstrap samples b
that do not contain observation i

I |Ci | is the number of such samples



Ex: King County Birth
Weight Data
Best subsets regression

Ridge regression

Simulation study (AIC and
BIC)

Estimation of the
extra-sample error
Cross-validation

Bootstrap methods

Summary

ISI-BUDS : Lecture 3 41

Bootstrap methods

.632 bootstrap estimator

I While the leave-one-out bootstrap estimator resolves the
overfitting associated with ÊPEboot, it can suffer in terms of
bias analogous to that suffered by K -fold cross-validation
when K > 1

I The average number of distinct observations in each
bootstrap sample is 0.632n

Pr(observation i ∈ bootstrap sample b) = 1 −
(

1− 1
n

)n

≈ 1 − e−1

= 0.632

I so ÊPE
(1)

behaves roughly in the same way as two-fold
cross-validation
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Bootstrap methods

.632 bootstrap estimator

I The ‘.632 estimator’ is design to alleviate the
‘training-set-size’ bias, and is defined by

ÊPE
(.632)

= 0.368err + 0.632ÊPE
(1)

I intuitively, the estimator pulls the leave-one-out bootstrap
estimator down towards the training error rate, and hence
reduces its upward bias
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Ex: King County birth weight data

Computation of prediction criteria for ridge regression models

I The function ridge.predcrit() on the course
webpage will compute all of our commonly used estimates
of prediction error for ridge regression models...

> set.seed(12345)
> source( "http://www.ics.uci.edu/~dgillen/

Stat211/Code/ridgePredCrit.q" )
> maxModel <- as.formula(bwt ~ gender + age + race + parity +
+ married + smokeN + drinkN +
+ firststep + welfare + smoker +
+ drinker + wpre + education)

> ridgeFit <- lm.ridge(maxModel, data=weight, lambda=252.53)
> ridge.predcrit( ridgeFit, formula=maxModel, data=weight,

K=10, B=500, boot=TRUE, sigmaSq="calculate" )
df mse aic bic cv bs.mse bs.1out bs.632

9.3619 284974 38514 38568 287171 286657 290600 289149
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Obtaining prediction criteria for an OLS fit in R

Obtaining prediction criteria for an OLS fit in R

I Similarly, the function lm.predcrit() will compute all of
our commonly used estimates of prediction error for a
standard OLS regression model...

##
#####
##### Fit a standard liner regression model adjusting for
##### wpre, age, gender, and smokeN
#####
##
> fit.lm <- lm( bwt ~ wpre + age + gender + smokeN, data=weight )

> lm.predcrit( fit.lm, data=weight, K=10, boot=TRUE, B=100 )
df mse Cp aic bic cv cv.k bs.mse bs.1out bs.632
5 291265 292432 38560 38589 292487 292512 291927 293132 292689
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Summary

Criteria to assess predictive accuracy

I Decision theoretic approach

I We measure errors between Y and f̂ (X ) by specifying a
loss function L(Y , f̂ (X ))

I The test or generalization error is the expected prediction
error over an independent test sample

EPE = EX ,Y

[
L(Y , f̂ (X ))

]
I the expectation is taken over the joint distribution of X and Y
I the average error, were the prediction model to be applied

to an independent sample from the population



Ex: King County Birth
Weight Data
Best subsets regression

Ridge regression

Simulation study (AIC and
BIC)

Estimation of the
extra-sample error
Cross-validation

Bootstrap methods

Summary

ISI-BUDS : Lecture 3 46

Criteria

Possibilities for estimating EPE

I Might consider training error

err =
1
n

n∑
i=1

L(yi , f̂ (xi))

I Negatively biased....Overly optimistic

I Analytically, focus on in-sample error

Err =
1
n

n∑
i=1

Ey

[
EYnew

[
L(Y new

i , f̂ (xi)
]]
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Criteria

Possibilities for estimating ERR

I AIC
I Consider (-2 times) the log-likelihood to be a loss function

AIC = −2
n

loglike + 2
p
n

I BIC
I Motivated by the Bayes factor in model selection

Pr(Data| Mm) ≈ log Pr(Data| Mm, θ̂m) − (log n)
pm

2

I Computed in practice as

BIC = −2loglike + (log n)p



Ex: King County Birth
Weight Data
Best subsets regression

Ridge regression

Simulation study (AIC and
BIC)

Estimation of the
extra-sample error
Cross-validation

Bootstrap methods

Summary

ISI-BUDS : Lecture 3 48

Criteria

Resampling estimates EPE

I Using resampling to change the support of the observed
predictors...

I General strategies that can be applied to any estimation
technique (some quicker than others!)

I Cross-validation

I Focus on the predicted residual sum of squares

PRESS =
n∑

i=1

(
yi − ŷ(i)

)2

I Easily computed for OLS fits
I Can be computationally intensive for more complicated

regression models
I In this case, could focus on K -fold cross-validation
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Criteria

Resampling estimates EPE

I Bootstrapping

I Basic bootstrap is biased downards
I Leave-one-out bootstrap is generally biased upwards
I Compromise is the .632 bootstrap

ÊPE
(.632)

= 0.368err + 0.632ÊPE
(1)
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